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Figure 1: Architecture of our model. We simply add a
convolution and sigmoid layer to the last layer of the origi-
nal attribute encoder from AEI-Net [7].

A. Architecture
Here, we detail the architecture of our face-swapping

model. As described in the main paper, our architecture is
based on AEI-Net [7] but we incorporate a mask predictor
into the model inspired by previous studies [12, 13, 15]. We
illustrate the architecute of our model in Fig. 1. We simply
add a convolution layer and sigmoid layer to the last layer
of the attribute encoder to predict blending masks M̂ . We
blend the foreground face image Ỹs,t and target image Xt

using the predicted M̂ as follows:

Ys,t = Ỹs,t ⊙ M̂ +Xt ⊙ (1− M̂). (1)

In our model, we assume the blending masks for the same
target images should be the same independently of source
images. Note that losses are computed on the blended result
Ys,t; therefore, the intermediate generated face Ỹs,t is noisy
outside of the face.

B. Comparison with Additional Baselines
We compare our model with two additional baselines in

Fig. 2: 1) We input masked source images into a pretrained
face-swapping model that is the same model as Arc-Arc in
Fig. 6, denoted as Masked Infer.. To only include the face
area below the eyebrow and between ears, we generate the
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Figure 2: Comparison with additional baselines.

masks by computing the convex hull of 68 facial landmarks
by FAN [1]. 2) We train Arc-Arc model from scratch with
masked source images, denoted as Masked Train.. As can
be seen, the models still suffer from the attribute inconsis-
tency. Therefore, we can conclude our method is a unique
solution for the attribute leakage problem.
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(a) Cur-R100-MS1M
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(b) QMag-R100-MS1M
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(c) Ada-R100-WF12M
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(d) Arc-R50-Syn
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(e) Arc-ViT-MS1M
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(f) Blend-ViT-MS1M

Figure 3: Different models and dataset.

C. Attribute Biases on Different Face Recogni-
tion Models

We visualize the similarity distributions of different face
recognition models in Fig. 3: (a) CurricularFace (Cur) [5],
(b) QMagFace (QMag) [11], (c) AdaFace (Ada) [6] on a



lager dataset WebFace12M (WF12M) [17], (d) ArcFace
(Arc) on GAN-generated face images (Syn) [9], and (e)
ArcFace with VisionTransformer (ViT) [3]. We can see
that the attribute leakage problem still exists in these var-
ious face recognition models. Additionally, we train ViT
backbone using our BlendFace pretraining. As shown in
Fig. 3 (f), our training strategy works well even on ViT,
which proves the generality of our method.

D. More Comparisons on FF++
We show more qualitative comparisons on FaceForen-

sics++ [10] in Fig. 4. Our model performs consistent face-
swapping for a range of source and target images compared
to previous methods [2, 4, 8, 12, 14, 16].
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Figure 4: More comparisons on FF++.


