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1. Implementation Details

This supplementary section provides a detailed de-
scription of our model implementation, complement-
ing the information presented in the paper.

Model optimization and training setting: We train
the model for NYUD-v2 [11] dataset through four pixel-
wise tasks: semantic segmentation, depth estimation,
surface normal estimation, and edge detection. We
utilize the cross-entropy loss function for discrete clas-
sification tasks such as semantic segmentation and
edge detection. For the depth and normal estimation
tasks, we employ the reverse Huber loss [6] and ℓ1
loss, respectively. Similarly, for the PASCAL-Context
[2] dataset, we consider five pixel-wise tasks: seman-
tic segmentation, saliency detection, surface normal
estimation, boundary detection, and human parsing.
The task-specific models for these tasks are trained us-
ing the ℓ1 loss for continuous regression tasks and the
cross-entropy loss for discrete classification tasks.

As described in the paper, we employ a three-step
training strategy to prune delta weight and delta ac-
tivations. The first two steps are inherited from the
Diff-pruning technique [4] to prune the delta weight
by employing the ℓ0 loss. The third step is required
by our algorithm to prune the delta activation across
the task and temporal domains by applying the ℓ1 loss.
One of the main advantages of the three-step train-
ing strategy is that the relaxed binary mask of delta
weight can be fixed after the second step, ensuring
that the sparsity ratio of the delta weight matrix will
not be affected by activation pruning. We provide de-
tailed training settings of the three-step strategy for the
NYUD-v2 and PASCAL-Context datasets in Tables 1
and 2, respectively. Note that we gradually decrease
the learning rate of each step to prevent the backward
gradient fluctuation after fixing the location of non-
zero elements in the delta weight matrix. This avoids
performance degradation after step 1.

Data processing: We apply pre-processing steps spe-
cific to each dataset before training our model. For
the PASCAL-Context dataset, we resize the images to
512 × 512 after zero-padding their borders. This is nec-
essary because Swin transformer [7] requires images
of similar height and width for patch merging. For the
NYUD-v2 dataset, we resize all the images to 416× 416
to reduce the memory requirements during the training
of the delta task and temporal activation pruning. Our
data augmentation pipeline involves random scaling,
cropping, horizontal flipping, normalization, and color
jittering with the following hyperparameters: bright-
ness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.5.
For video inputs in NYUD-v2, we first synchronize
the training frames to produce a continuous video and
then use a sampling rate of 30 frames per second for
our experiments.

Task-specific network: As discussed in the paper, we
employ the vision transformer [3, 7] as the encoder for
each task, followed by a task-specific CNN head. We
use the same architectures described in [3, 7] to build
the Swin-B/ViT-B transformers. The architecture of
each CNN head is designed based on the task-specific
performance goals and FLOPs requirements. For depth
estimation, we use a hybrid DPT-Small head [10] to
decode layers [3, 6, 9, 12] of the ViT-B transformer back-
bone into a dense feature map with dimensions of
[96, 192, 384, 768]. These extracted features are com-
bined utilizing RefineNet-based feature fusion [10] to
create the final dense depth feature map, as described
in [10]. Finally, we feed this map into 2D convolutional
layers with dimensions of 128 to obtain the depth esti-
mation output.

For other tasks, we adopt the ConvNeXt [8] archi-
tecture following the approach of [1]. After the trans-
former backbone, we first apply a linear projection to
create new output tokens with an increased dimension
of D. Then, we reshape these tokens to form a new
feature map with a size of (H/4)× (W/4)× (D/8). The



Table 1: Training setting of NYUD-v2 dataset.

Hyperparameters Value

Optimizer AdamW [9]
learning rate (step1) 1e−4
learning rate (step2) 6e−5
learning rate (step3) 1e−5
Weight decay 1e−6
Adam β (0.9, 0.95)
Batch size 64
Learning rate sched. Polynomial decay [13]
Training epochs 1500
Warmup learning rate 1e−6
Warmup epochs 40
λw [1e−8 , 10e−8 ]
λa1 [1e−10 , 10e−10 ]
λa2 [1e−10 , 10e−10 ]
Input resolution 416 × 416

Table 2: Training setting of PASCAL-context dataset.

Hyperparameters Value

Optimizer AdamW [9]
learning rate (step1) 5e−5
learning rate (step2) 2e−5
learning rate (step3) 1e−5
Weight decay 1e−6
Adam β (0.9, 0.95)
Batch size 6
Learning rate sched. Polynomial decay [13]
Training epochs 500
Warmup learning rate 1e−6
Warmup epochs 1
λw [1e−8 , 10e−8 ]
λa1 [1e−10 , 10e−10 ]
Input resolution 512 × 512

Table 3: Utilized dimension for the ConvNeXt block in
each task.

Task Dimension (D)

V
iT

-B

Semseg 3072
Edge 3072

Normal 1536
Sal 3072

Parsing 1536

Sw
in

-B

Semseg 6144
Edge 6144

Normal 3072
Sal 6144

Parsing 3072

generated feature map is fed into two ConvNeXt blocks
to create a dense task-specific feature map, where each
ConvNeXt block contains one 7× 7 depthwise convolu-
tion and two pointwise convolution layers, connected
by a GELU [5] nonlinearity. Finally, we pass the final
task-specific feature map through a 2D convolution
layer and upsample it to full resolution using bilinear
interpolation. Table 3 shows the dimensions utilized
for each task in the ConvNeXt block for both ViT-B
and Swin-B encoders. As the last block of the Swin-B
(or ViT-B) transformer uses a patch size of 32 × 32 (or
16 × 16), we set the dimension of the projection in the
ConvNeXt block for Swin-B to be 2 times larger than
that of the ViT-B backbone to achieve similar FLOPs
for the task-specific heads.

FLOPs computation: The FLOPs computation of
each task-specific model includes the computations for
the backbone and task-specific head. The calculation of
the ViT-B/Swin-B backbone includes multi-head self-
attention and feedforward network (FFN) layers. Also,

the computation of the task-specific head comprises
the 2D convolution, batch normalization, and fully-
connected layers. The FLOPs counting formula for
each operation type in each layer is presented in Table
4. As in the prior work [7], the computations of non-
linear activation functions (e.g., GELU and Softmax)
are ignored.

Table 4: The detail method for calculating FLOPs.

Layer FLOPs

Ba
ck

bo
ne Linear Projection N×D×D

Multi-head Attention 4N×D×D+ 2N×N×D

LayerNorm D×H×W

Patch Merging (Swin-B) D×H×W + 2D×D×H×W

H
ea

d 2D Convolution Co×Ci×k×k×H
s ×W

s
BatchNorm Co×H×W

N: number of patches, D: feature dimension
Co,Ci, k, s: output, input channel, kernel size, stride
H,W: 2D input height, and width

2. Additional Experiment Results
Ablation study for Swin-B encoder: In the paper, we
conducted an ablation study of ℓ0 and ℓ1 regularization
coefficients on performance, computation reduction,
and memory storage reduction for each sub-task. We
conduct a similar hyperparameter ablation study for
λw and λa1 of the Swin-B encoder by sweeping λw in
the range of [1 × 10−8, 10 × 10−8] and λa1 in the range
of [1 × 10−10, 10 × 10−10]. Figure 1 shows the impact
of different values of λw and λa1 on the performance
of the human parsing task. As expected, increasing
λw leads to more parameter savings but less accurate
performance. Also, increasing λa1 saves more compu-
tations but leads to less accurate performance.



Figure 1: The impacts of λw and λa1 on the human
parsing task for the PASCAL-Context dataset using
Swin-B as the backbone.

Delta weight and activation sparsity: As described
in the paper, we conduct a quantitative analysis of the
impact of weight and activation pruning by computing
the average sparsity ratios (i.e., the ratio of zero-valued
weights) of delta weights and delta activations in the
backbone across all sub-tasks. We present the results
for the PASCAL-Context dataset using the Swin-B en-
coder in Figure 2. It reveals that the overall sparsity
ratios for both delta weight and delta activation are
slightly lower than those obtained with ViT-B as the
backbone. This may be due to the fact that Swin-B is
a more compact model with fewer FLOPs than ViT-B,
which makes increasing the sparsity ratios for both
delta weights and delta activations more challenging.

Figure 2: Overall delta weight and task activation spar-
sity for the PASCAL-Context dataset using Swin-B.

Additionally, we present the per-layer sparsity of the
delta weights and delta activations for the NYUD-v2
(with ViT-B backbone) and PASCAL-Context datasets
(with ViT-B or Swin-B backbone) in Figure 3. It shows
that the delta task activation is more sparse in the initial
layers, and the sparsity ratio decreases for later layers.
It is expected as the model learns more common fea-
tures in earlier layers and more task-specific features in
later layers. Moreover, we observe that human parsing
and edge detection tasks are more closely related to
the base task (semantic segmentation), as their spar-
sity ratios are higher than the other sub-tasks. On the
other hand, delta weight appears to be more sparse

in the first and last few layers, while it is less sparse
in the middle of the backbone, particularly for normal
estimation and saliency detection.

Video Frame Evaluation: As explained in the paper,
the NYUD-v2 dataset has sparsely annotated frames
for ground-truth labels. Thus we evaluate the perfor-
mance of our method by running it for all possible
keyframe (start frame) time offsets (in terms of the
frame index) within the range of [0, 4] with respect to
the ground-truth labeled frame. Table 5 presents the
performance of each sub-task for each offset.

Table 5: Temporal Results for various keyframe interval
offsets for NYUD-v2 dataset.

Interval offset Semseg Depth Normal Boundary
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

0 50.46 18.42 533.29 77.89
1 50.39 18.42 532.17 77.85
2 50.39 18.40 532.12 77.76
3 50.36 18.42 532.08 77.73
4 50.42 18.44 532.36 77.74

More Qualitative Results: We show per-pixel task
visualization results of our proposed method and the
SOTA method InvPT [12] on the challenging NYUD-
V2 dataset in Figure 4. It is evident that our method
generates better/comparable results than InvPT, es-
pecially on semantic segmentation and depth estima-
tion. Furthermore, we provide additional visualization
examples for the PASCAL-Context dataset using the
ViT-B backbone in Figures 5 and 6. The figures demon-
strate that our method yields significantly better results
than InvPT, particularly on semantic segmentation and
human parsing.



Figure 3: Delta weight and task activation sparsity ratios for each layer of backbone on (a) NYUD-v2 using ViT-B
(b) PASCAL-Context using ViT-B (c) PASCAL-Context using Swin-B for single image input.

Figure 4: Qualitative comparison with the SOTA method InvPT on NYUD-v2 dataset. Our method generates
better/comparable results than InvPT, especially on semantic segmentation and depth estimation.
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Figure 5: Qualitative comparison with the SOTA method InvPT on PASCAL-Context dataset. Our method produces
significantly better results than InvPT, especially on semantic segmentation and human parsing.



Figure 6: Qualitative comparison with the SOTA method InvPT on PASCAL-Context dataset. Our method produces
significantly better results than InvPT, especially on semantic segmentation and human parsing.


