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1. Implementation Details
We now introduce the network details of each module in our DPF-Net.

Global feature projection MLP. After extracting the global feature from the input volume, we project the global feature
to the part features. We first feed it into a weight-sharing one-layer MLP to obtain a M × n dimension embedding, then we
divide this embedding into M features equally to obtain the part features {Fi ∈ Rn, i = 1, 2, . . . ,M}, in our experiments
the dimension of global feature and part feature is 128.

Parameter Generation MLP fpara. To generate primitive parameters, we decode its part feature using a weight-sharing
parameter generation MLP fpara which consists of five MLPs. For part i, the part feature is first fed into a three-layer MLP for
high-level feature embedding extraction, then four one-layer MLPs are used to decode primitive parameters {Ri, ti, si, ρi}
respectively. In particular, the three-layer MLP is implemented with hidden layer size of 128 and no bias, output dimension
128. The bias of the four one-layer MLPs of t, s, ρ is initialized as zeros.

HyperNet Φ and DeformNet D. To model the geometry detail of each part, we use a primitive deformation module
(PDM) to deform the parameterized primitive fields. The PDM consists of a HyperNet Φ and a DeformNet D, both of which
is adopted from [2], but we use different network settings. To decrease the parameters of our network, we apply a HyperNet
Φ with one hidden layer and DeformNet D with two hidden layers of size 128. After each layer, we add the ReLU activation
function except for the last layer.

2. Additional Experimental Results

Table 1. Quantitive results of using different maximum primitive number M .

table chair airplane

Method CD m-IoU CD m-IoU CD m-IoU

M = 8 0.4756 91.3 0.3918 83.6 0.1941 66.0
M = 12 0.4588 90.8 0.3702 83.8 0.1952 65.7
M = 16 0.4467 90.5 0.3633 84.3 0.1914 65.4
M = 20 0.4451 90.7 0.3571 83.9 0.1903 65.5

Options of the Maximum Primitive Number M . In our paper, we set the maximum primitive number M empirically for
different categories. To evaluate the effect of M , we fix the other hyper-parameters and train several models with different
M . The quantitative comparisons are shown in Table 1. For all categories, increasing M leads to better reconstruction results
in terms of chamfer distance since more primitives can better fit the target shape and the primitive deformation module could
focus more on the shape details. As expected, in the ‘table’ and ‘airplane’ categories, the m-IoU decreases with larger M



since the finer division of object parts undermines the structural consistency. In the ‘chair’ category, the m-IoU is the highest
when M = 16 and then decreases as M increases, due to that chairs usually contain more parts. Based on the results in
Table 1, we choose M = 8 for ‘table‘ and ‘airplane‘ and M = 16 for the ‘chair’ for better structure extraction.

Additional Structural Reconstruction Results We provide additional experimental results on the unsupervised structural
reconstruction task on the ‘table’, ‘chair’, and ‘airplane’ categories in the ShapeNet dataset [1]. We set the maximum primitive
number for table M = 8, chair M = 16, and airplane M = 8. The qualitative comparisons of the reconstruction results
of these three categories are shown in Figure 1, 2 and 3 respectively. Compared to the primitive-based method CA [4]
and implicit function-based method RIM-Net [3], we can observe that our DPF-Net shows consistent structural partition and
more detailed reconstruction in the ‘chair’ and ‘table’ categories. For the ‘airplane’ category, our DPF-Net reconstructs more
details and achieves comparable in structure partition performance with the other methods.
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Figure 1. Qualitative comparison of unsupervised structural reconstruction methods on the ‘table’ category.
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Figure 2. Qualitative comparison of unsupervised structural reconstruction methods on the ‘chair’ category.
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Figure 3. Qualitative comparison of unsupervised structural reconstruction methods on the ‘airplane’ category.
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