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The appendix is organized as follows;

* Appendix A: gives more implementation details about
the experiments that we conduct.

* Appendix B: illustrates and explain the different vari-
ants of eP-ALM.

* Appendix C: presents more ablation studies on image-
text and video-text tasks.

* Appendix D: shows some qualitative results.

* Appendix E: discusses the limitation of the proposed
approach.

A. Implementation Details

We use OPT-2.7B in our final model. We extract the
[CLS] tokens of the last 6 layers of perceptual encoders and
prepend them, after linear projection, to the text tokens of
the last 12 layers of the OPT. Note that we replace the pre-
vious [CLS] with the new one to keep the same number of
tokens. We finetune with the classical cross-entropy loss
used to train the original OPT for VQA and Captioning. We
use the AdamW optimizer with a Ir of 1e-5 warmed up to
2e-5 then decreased to le-6 using a cosine scheduler. For
Adapters, we use sequential Adapters after self attentions
and feedforward layers with a downsample factor of 8 and
ReLU activation. For Soft Prompt, we implement it as a lin-
ear embedding layer that takes numbers from O to the length
of the prompt (here 10). We experiment also with adding
an MLP after the prompts as done with other approaches
[8]. We use the prompt with MLP for most of the exper-
iments as we find that it gives slightly better results. The
soft prompt and adapters are trained with a fixed Ir of 1e-5.
eP-ALM,,;-L is trained with a light-weight prompt (only
trainable tokens without MLP), starting learning rate of 2e-4
and a fixed learning rate of le-3 for the prompt with a total
batch size of 16.

VQA/GQA: we use a special token for VQA (' < /a >)
to separate the question from the answer. We train for 8
epochs with a batch size of 64 (128 for GQA) and an image
resolution of 224. Training our approach with OPT-2.7B
for VQA v2 can be done on a single V100 GPU 32GB
for 1.8 days (as the perceptual encoder is frozen, saving its
output tokens can save a lot of training time). For Few-shot
experiments, we train longer (for 64 epochs) with higher
starting learning rate (1e-4 warmed up to 2e-4 and decreased
to le-5). Those marked by by a * are trained for 100 epochs
as in PromptFuse [5].

Image Captioning we train for 8 epochs with a batch size
of 64 and an image resolution of 224.

Video QA: we sample randomly 8 frames of resolution
224x224 for each video and train for 25 epochs with a batch
size of 32. For Zero-Shot experiments, we train only for 4
epochs with starting learning rate of le-4. We use only the
spatial self attention of TimeSformer to train on VQA v2.

Video Captioning: we sample randomly 16 frames of
resolution 224x224 for each video and train for 25 epochs
with a batch size of 64.

Audio Captioning we train for 30 epochs with frequency
and time masking of 24 and 96 respectively. The mel bins is
128 and the audio length is 1024. Batch size 32. For Deep
Prompt, we inject new soft prompt in all the 32 blocks of
OPT (each with length 10).

B. eP-ALM Variants

We detail the different variants proposed in this paper
(here we consider ViT-B/16 and OPT-350M for simplicity).
These variants are illustrated in Fig.1:
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Figure 1: Illustration of the different variants of eP-ALM; eP-ALM;;,, is the most efficient variant that only trains the linear projection
layer, eP-ALM,,; adds trainable Soft Prompts (i.e Prompt Tuning), and eP-ALMgq, replaces the Soft Prompt in eP-ALM (last figure) with
trainable Adapters. All models extract the [CLS] tokens from the last layers of ViT and prepend/replace them in the last layers of OPT.

eP-ALM;;,,: we extract the [CLS] tokens from the last 6
layers of the frozen ViT and inject them in the last 12 layers
of the frozen OPT. To reduce inference cost, each couple
of layers (here 2), we replace the previous [CLS] with the
new one (thus only increasing the number of tokens by 1
the whole process). All visual [CLS] tokens are projected
by one trainable linear projection layer (shared) to fit their
dimension to that of the OPT.

eP-ALM,;: we augment eP-ALM;;,, with Prompt Tun-
ing, which consists of prepending trainable tokens (i.e, soft
prompt) to the input of the LM. This might help the model
to adapt well to the new task by providing context to the
text input. For the sake of efficiency, we prepend only 10
learnable tokens.

eP-ALM: while one linear projection is appealing, it might
not be able to capture all the particularity of different [CLS]
tokens. To overcome this, we use different projections for
each [CLS], while keeping the soft prompt.

eP-ALM, ,: another alternative to Prompt Tuning are
Adapters. We follow other approaches [2] and add sequen-
tially one adapter module (downsample, activation then up-
sample) after self attention and feedforward layers in all the
blocks of OPT. While this might give better results, it adds
significant number of trainable parameters.

C. Ablation Study
Here we present additional ablation study.

C.1. Image-Text

Training All Parameters Here we investigate how much
gain we can obtain by unfreezing the pretrained models.
We experiment on VQA v2 with eP-ALM. Table | shows

Trainable Models LM | VQA v2
VM LM size | test Acc.
X X 350M | 33.08
X v 350M | 35.44
v v 350M | 3547

Table 1: Ablation study: we study how much gain we can obtain by
also training the pretrained vision and language models. We see slight
improvement by training the pretrained models.

that finetuning the pretrained models in our eP-ALM gives
slight improvement, despite the large number of trainable
parameters. Note that, we find that using very small learning
rate (Ir=1e-7) is the only option (while keeping an Ir of
1e-5 for the connectors) to unfreeze these models without
significant degradation.

C.2. Video-Text

Video Encoder: here we compare different encoders to
process the videos. We compare the TimeSformer [ 1] that
has both spatial and temporal attention and trained for video
classification with a simple baseline, ViT trained on Ima-
geNet, that ignores the temporal dynamics. For ViT, we take
the average of [CLS] tokens of the processed frames while
for TimeSformer we consider the one [CLS] token. Table 2
shows that using video-specific encoders gives significantly
better results for video captioning. In addition, we find that
using 16 frames instead of 8 gives slight improvement.

Injection and Extraction level of [CLS] tokens: here we
show the importance of leveraging the hierarchical represen-
tation in both the video encoder and language model. Table
3 shows the results on MSVD-QA. We show that keeping
the interaction between cross modal tokens to the last lay-
ers (layer 19 to 31) of the OPT leads to significantly better



Method _ MSRVIT
CIDEr B@4
ViT-B Avg. 1796 12.77
ViT-B Avg. (16 ) 17.82 12.85
TimeSformer 20.11 13.53
TimeSformer (16 f) 20.58 14.12

Table 2: Ablation (Caption) MSRVTT Caption.

results. Extracting several tokens from different tokens of
the TimeSformer gives slight improvement. However, using
hierarchical video transformers [4, 6] might lead to better
results. We noticed also that Adapters generally give better
results than Prompt Tuning, this might be because when
training on videos we sample randomly some frames, which
prevent the model to overfit in case of small datasets.

Adaptation [CLS] tokens MSVD-QA
approach from encoder layers to OPT layers test Acc.
12 1 13.49
12 1to 31 27.16
Soft Prompt 12 1910 31 30.86
6to 12 19 to 31 31.18
12 1 12.40
Adapters 12 1to31 34.86
12 19 to 31 35.94

Table 3: Ablation study: we investigate the extraction and injection
position of [CLS] tokens for Video QA.

C.3. Audio-Text

Time and Frequency Masking: following other ap-
proaches [3, 7] we train eP-ALM with time and frequency
masking on AudioCaps. Table 4 shows that masking signif-
icantly help, however, using too much of masking hurt the
performance.

Masking Window AudioCaps
Time Frequency CIDEr B@4
256 64 33.94 10.21
192 48 35.67 10.40
96 24 37.14 11.37
0 0 36.01 10.23

Table 4: Ablation Study: time and frequency masking help for Audio
Captioning.

D. Qualitative Results

We show some qualitative results of our eP-ALM model
with OPT-2.7B in Fig. 2. For VQA, we can notice that our
model is able to correctly answer the questions. Moreover,
some of the answers are richer and more accurate than the
manually labeled ground truth in the dataset. This also re-
veals that the exact matching evaluation protocol is not in
favor of the open-ended generation produced by our model.
Interestingly, it seems that the model learned the answering
style in the training set (i.e, short and concise answers). For
Captioning, the model can generate coherent sentences de-
scribing the image globally. However, it still misses some
details in the image.

Q: what kind of room is this?
A: restaurant (restaurant)

Q: what color is the bear?
A: black and blue (blue)

WSS

Caption: there is a baseball
game going on in this

Caption: a very nice clean
simple bathroom with modern
white finishes picture

Figure 2: Qualitative results of eP-ALM: the model is able to
generate accurate answers and coherent descriptions of the image.

E. Limitations

Even though we show appealing results for very efficient
training, the method has several limitations, which we il-
lustrate some of them in Fig. 3. For VQA, we can notice
that the model is unable to capture finegrained details in
the images (e.g., number of colours and the zebra in the
first 2 examples), which might be due to constraining the
interaction with the vision model through the [CLS] tokens,
that generally capture global information about the image.
In case of hard questions, the model favor coherent gener-
ation of a relevant question followed by its correct answer,
instead of answering the main question (”A: what color is
the phone?? black™ in example 3).

For Captioning, the model seems to favor outputting a
coherent sentence, even though it is not entirely correct



(’many” cows in a “crowded” city). Secondly, the model
might hallucinate some objects that does not appear in the
image (“apples” in the example 2). Finally, the model lacks
common sense reasoning, making him unable to understand
that elephants are not small and being far from the camera
does not change this fact (example 3).

Our approach inherents most of the limitations and biases
of pretrained models, especially the LM, and training only
few adaptation parameters does not seem to avoid the transfer
of these biases. Finally, the model is trained with next token
prediction and is able to produce coherent text, however, it
is still not clear how this paradigm can lead to real reasoning
capabilities.
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Q: how many colors are in the Q: is there a zebra in the

Q: what is on the sign? Q: \;vhy wc;uld'someone wantto
elephants covering? picture? A: parking lot (street name) carry these two devices? A: what
A:1(2) A: no (yes) color is the phone?? black(calling)

2

Caption: There are many cows Caption: a basket filled with Caption: a small elephant Caption: A small, green fire
on the street in a crowded city apples and oranges walking through a field in front of

hydrant in the middle of a street
trees

Figure 3: Illustration of some limitations of eP-ALM: the model struggles to capture finegrained details, favors coherence over factual
responses, hallucinates some objects and lacks common sense reasoning. Ground truth answers are highlighted in green.

Q: what color is the bear?

Q: what kind of room is this?
A: black and blue (blue)

Q: is this a tourist attraction?
A: restaurant (restaurant)

Q: Which game is this?
A: yes (yes)

A: tennis (tennis)
B

Caption: a very nice clean

Caption: there is a baseball Caption: a boy riding Caption: the zebra in the
simple bathroom with modern game going on in this skateboards in a sidewalk in snow stands still and looks
white finishes picture front of a building sad

Figure 4: Qualitative results of eP-ALM: the model is able to generate accurate answers and coherent description of the image. Ground
truth answers are highlighted in green.



