
Supplementary Material
Learning by Sorting: Self-supervised Learning

with Group Ordering Constraints

Nina Shvetsova1,2,3 Felix Petersen4 Anna Kukleva2 Bernt Schiele2 Hilde Kuehne1,3,5
1Goethe University Frankfurt, 2Max-Planck-Institute for Informatics, 3University of Bonn, 4Stanford University, 5MIT-IBM Watson AI Lab

{shvetsov@uni-frankfurt.de, mail@felix-petersen.de}

In the supplementary material, we first discuss relations be-
tween the GroCo loss, the contrastive loss, and the triplet
loss in Section A. Then, we provide additional experimen-
tal evaluation results in Section B and a qualitative analysis
in Section C. In Section D, we describe odd-even sorting
networks. Finally, we cover additional implementation de-
tails in Section E.

A. Discussion of GroCo / Contrastive / Triplet
Loss Relations

In this section, we discuss the similarities and differences
between the GroCo loss, the contrastive loss, and the triplet
loss. For comparison purposes, let’s consider a simplified
version of losses when there is only one positive example xp

and one negative example xn for the anchor xa. We denote
the distance from the anchor xa to the positive sample xp as
dp = − xa⊤xp

∥xa∥∥xp∥ and the distance from the anchor xa to the

negative sample xn as dn = − xa⊤xn

∥xa∥∥xn∥ . Then contrastive
InfoNCE loss (with respect to the anchor xa) is defined as:

LContrastive = − log
exp(−dp/τ)

exp(−dp/τ) + exp(−dn/τ)

= log (1 + exp(−(dn − dp)/τ))

(1)

where τ is a temperature hyperparameter (Figure A.1a).
The triplet loss is defined as:

LTriplet = max (dp − dn + r, 0) =

= max (r − (dn − dp), 0)
(2)

where r is a margin hyperparameter (Figure A.1b).
For the GroCo loss, a permutation matrix P ∈ R2×2

corresponds to only one conditional swap operation and is
defined as:

P11 = P22 = f(dn − dp) =
1

π
arctan(β(dn − dp)) + 0.5 ,

P12 = P21 = f(dp − dn) =
1

π
arctan(β(dp − dn)) + 0.5

(3)

where β is an inverse temperature. Therefore, the GroCo
loss is defined as:

LGroCo =
1

4

(
−2 log

(1
π
arctan(β(dn − dp)) + 0.5

)
−

−2 log
(
1− 1

π
arctan(β(dp − dn))− 0.5

))
=

= − log
(1
π
arctan(β(dn − dp)) + 0.5

)
(4)

where β is an inverse temperature hyperparameter (Fig-
ure A.1c).

In Figure A.1, we show the loss curves with different
values of respective hyperparameters. We note that in this
simplified example with only one positive and only one neg-
ative, all three losses try to maximize the difference be-
tween the distances to the positive and negative examples
(dn − dp). The temperature τ , the margin r, or the inverse
temperature β define the flatness of the loss curve depend-
ing on the difference (dn − dp).

However, in the case with more negative/positive exam-
ples for the anchor image, different losses integrate infor-
mation from multiple negatives/positives in different ways.
For the triplet loss, there are various strategies to sam-
ple one positive example and one negative example for
the anchor image [7, 8]. The complete loss is defined as
the sum (or average) of the losses for the chosen triplets∑

ij max (r − (dni − dpj), 0). On the other hand, the con-
trastive loss aggregates multiple negatives by contrasting
the positive example to all negative examples, resulting in
sum under logarithm: log (1 +

∑
i exp(−(dni − dp)/τ)).

In contrast to an explicit sum over a predefined number of
negatives, the GroCo loss aggregates multiple positives and
negatives via the permutation matrix, conditionally swap-
ping neighboring elements, and later applies the group or-
dering supervision, enforcing the distance between positive
and negative groups.

log (1 + exp(−(dn − dp)/τ))

2 1 0 1 2
dn dp

0

5

10

15

20

Lo
ss

LContrastive, = 0.1
LContrastive, = 0.5
LContrastive, = 1

(a) Contrastive InfoNCE loss

max (r − (dn − dp), 0)

2 1 0 1 2
dn dp

0

1

2

3

4

Lo
ss

LTriplet, r = 0.8
LTriplet, r = 1.6
LTriplet, r = 2

(b) Triplet loss

− log(1
π
arctan(β(dn − dp)) + 0.5)

2 1 0 1 2
dn dp

0

1

2

3

Lo
ss

LGroCo, = 0.25
LGroCo, = 1
LGroCo, = 4

(c) GroCo loss

Figure A.1. Comparison of the contrastive loss, the triplet loss, and the GroCo loss in a simple scenario with only one positive example
and one negative example for an anchor image. We denote the distance from the anchor to the positive sample as dp and the distance from
the anchor to the negative sample as dn. We note that, in the simple case of only one positive and one negative, all three losses try to
maximize the difference between the distances to the positive and negative examples (dn − dp). The temperature τ , the margin r, or the
inverse temperature β define the flatness of the loss curve depending on the difference (dn − dp).

B. Additional Experimental Results

In this section, we provide additional experimental results:

Top negatives, stop gradient operation. We further ana-
lyze if using the top-10 strongest negatives and the stop gra-
dient operation (stop-grad) can also boost the performance
of the considered contrastive learning baseline SimCLR.
In our method, the stop gradient operation stabilizes train-
ing (fewer spikes in gradients) and allows for convergence
with large variations of hyperparameters. In Table B.1a, we
observe that stop gradient does not boost SimCLR perfor-
mance. However, if we utilize only the top-10 strongest
negatives in the loss, it stabilizes SimCLR training. More-
over, usage only top-10 negatives indeed boosts SimCLR
performance on +3.1% in k-NN (k = 20) and +0.3% in
linear probing (Top-1), but the SimCLR still significantly
underperforms the proposed GroCo method by 5.5% in k-
NN (k = 20) and +3.2% in linear probing (Top-1).

Longer training. We further assess the performance of
our model in a longer training regime of 800 epochs (Ta-
ble B.1b). We find that the proposed model with a multi-
crop augmentation strategy achieves 66.1% in k-NN (k =
20) and 73.9% in linear probing (Top-1).

Augmentation Strategy. In Table B.1c we evaluate the per-
formance of the model with respect to different augmenta-
tion strategies for view sampling. We follow two setups:
(1) the augmentation strategy as used in the SimCLR [3]
method with a random resized crop, color jittering, and
gaussian blur, grayscaling and horizontal flip and (2) the
augmentation strategy as used in the DINO [2] method that
extends the SimCLR list of augmentations with solariza-
tion. SimCLR augmentations are considered as “stronger”
compared to DINO augmentations since they include a
larger range of cropping sizes (8% − 100% of original im-
age compared to 14% − 100% in DINO augmentations)

and larger range values in color jittering. We observe that
the stronger SimCLR [3] augmentations are more beneficial
for the SimCLR method than the weaker DINO augmenta-
tions, while for the proposed method, the DINO augmen-
tation strategy is more beneficial. However, the difference
between augmentation strategies diminishes with increas-
ing number of training epochs and is no longer measurable
at 400 epochs. For a fair comparison, we use the SimCLR
augmentation strategy in all reproductions of the SimCLR
method reported in the main paper.

Projection Dimensionality. We also ablate our method
with respect to dimensionality of the projection space (or
the latent space), where distances between samples are
computed to calculate a training loss. Table B.1d shows
that increasing dimensionality of the projection space in-
creases performance in general, which is more noticeable
for the k-NN performance. Note that we do not change the
dimensionality of the embedding space (output space of the
encoder that is used for the k-NN evaluation and linear eval-
uation), which is always 2048-dimensional.

Importance of Negatives. We also evaluate the importance
of utilizing strong negatives for the successful training of
our model. We train the model using ten random nega-
tives instead of the top-10 strongest negatives as a nega-
tive group and report performance in Table B.1e. We ob-
serve that leveraging the strongest negatives increases per-
formance across all metrics, demonstrating the importance
of hard negatives during training with the GroCo loss, simi-
larly as the contrastive loss benefits from hard negative sam-
pling [6].

k-NN in Projection Space. We also evaluate the k-NN per-
formance in the projection space (or the latent space) where
the training loss is applied. We compare k-NN performance
in the projection and representation spaces in Table B.1f.
We observe that for both methods, k-NN performance is

k-NN Evaluation Linear Probing
k=1 k=10 k=20 Top-1 Top-5

InfoNCE (= SimCLR method) 46.0 51.5 51.9 65.7 86.7
InfoNCE + s. grad. 46.1 51.3 51.8 65.6 86.7
InfoNCE + top 10 neg. unstable training
InfoNCE + top 10 neg. + s. grad. 49.5 54.6 55.0 66.0 86.7
GroCo + top 10 neg. unstable training
GroCo + top 10 neg. + s. grad. 55.3 60.3 60.5 69.2 88.4

(a) Usage of top-10 negatives, stop gradient operation

Method Views Epochs k-NN Evaluation Linear Eval.
k=1 k=10 k=20 Top-1 Top-5

GroCo 2×224 800 59.9 65.0 65.3 71.2 89.9
GroCo 2×224+6×96 800 60.8 65.7 66.1 73.9 91.6

(b) Longer training

Method Augmentations Epochs k-NN Evaluation Linear Evaluation
k=1 k=10 k=20 Top-1 Top-5

SimCLR as in SimCLR [2] 100 46.0 51.5 51.9 65.7 86.7
SimCLR as in DINO [2] 100 43.3 48.6 49.1 63.7 85.4

GroCo as in SimCLR [2] 100 54.0 59.0 59.4 68.4 88.3
GroCo as in DINO [2] 100 55.3 60.3 60.5 69.2 88.4

GroCo as in SimCLR [2] 200 56.7 61.6 61.8 69.8 89.1
GroCo as in DINO [2] 200 57.7 62.4 62.7 70.4 89.5

GroCo as in SimCLR [2] 400 58.3 63.3 63.8 71.1 89.7
GroCo as in DINO [2] 400 58.7 63.4 63.6 71.0 89.7

(c) Augmentation strategy

Projection dim Embedding dim k-NN Evaluation Linear Probing
k=1 k=10 k=20 Top-1 Top-5

128 2048 53.7 58.5 58.7 68.1 88.0
512 2048 55.2 59.8 60.1 69.0 88.5
2048 2048 55.3 60.3 60.5 69.2 88.4

(d) Projection dimentionality

k-NN Evaluation Linear Probing
k=1 k=10 k=20 Top-1 Top-5

10 random negatives 39.5 45.0 45.3 60.1 82.7
top-10 strongest negatives 55.3 60.3 60.5 69.2 88.4

(e) Importance of negatives

Method Space k-NN Evaluation
k=1 k=10 k=20

SimCLR Projection Space 35.8 41.6 42.3
SimCLR Representation Space 46.0 51.5 51.9

GroCo Projection Space 51.4 56.9 57.3
GroCo Representation Space 55.3 60.3 60.5

(f) k-NN evaluation

Table B.1. Additional Experiments. The best results are bolded.
Options used to obtain the main results are highlighted. Back-
bone=Resnet50, Views=2×224, #epochs=100.

higher if we use embeddings from the representation space
even though we train the model to compare embeddings
in the projection space. This could be explained by the
fact that the embedding space contains more general im-
age representations since the representations in projection

space could be overfitted to the respective augmentations
and there become agnostic to some image attributes (like
color, since we train the model to match views with differ-
ent color jittering parameters).

C. Qualitative Analysis of Learned Represen-
tation Space

We additionally perform a qualitative analysis of the
learned representations. In Figure C.1, we visualize repre-
sentations for images from four classes of different types of
cats and four classes of different types of dogs. We find that
our method produces much more visually separable clusters
with respect to “inter-class” variations (cats vs dogs) and
“intra-class” variations (between different classes of cats)
than the SimCLR baseline.

D. Odd-even Sorting Network
An odd-even sorting network, or odd-even sort, is a sort-

ing algorithm from classic computer science literature [5].
Sorting networks, or networks for sorting, are a family of
sorting algorithms that consist of the fixed sequence of com-
parisons, in a sense that the next comparisons (elements on
which positions are compared) does not depend on the re-
sult of previous comparisons. An odd-even sorting network
is a simple example of this family of algorithms. The odd-
even sorting network compares neighbored elements start-
ing from odd and even indices alternating on each step,
and requires n steps to sort a sequence of n elements. We
present a pseudocode of the odd-even sorting network in Al-
gorithm 1. Additionally, we illustrate the (hard) odd-even
sorting process in Figure D.1.

Algorithm 1 Python–style pseudocode of an odd-even sorting
network for sorting an array of numbers in non-descending order

arr: array to sort
n: length of array

for s in range(1, n + 1):
if s % 2 == 1:

for i in range(0, n - 1, 2):
if arr[i] > arr[i+1]:

arr[i], arr[i+1] = arr[i+1], arr[i]
else:

for i in range(1, n - 1, 2):
if arr[i] > arr[i+1]:

arr[i], arr[i+1] = arr[i+1], arr[i]

E. Implementation Details
E.1. Linear Evaluation Details

For linear evaluation, we train a linear classifier on
frozen representations in a fully-supervised way, using the
training set of ImageNet for training and the validation set
for evaluation. We follow the training protocol of Sim-
CLR [3] and SimSiam [4] and train a linear classifier for 90

(a) SimCLR (b) GroCo (ours)

Figure C.1. t-SNE visualization of learned representations of Imagenet validation images from four classes of different types of cats
(Egyptian cat, Persian cat, Siamese cat, Tabby cat) and four classes different types of dogs (Pomeranian dog, African hunting dog, Tibetan
mastiff, English setter) for the SimCLR method and the proposed method. For visualization we use models with Resnet50 encoder trained
for 100 epochs with a batch size of 1024 and 2× 224 views.

2

4

1

6 6

1

1

6

4

2

2

4

1

2

4

6

1

2

4

6

step 1 step 2 step 3 step 4Input:

6

4

2

1

Output:

[1]

[2]

[3]

[4]

Figure D.1. An illustration of a hard odd-even sorting network for
sorting four elements in non-descending order with an example of
sorting of [6, 1, 4, 2] array.

epochs using the LARS optimizer [9] with the batch size of
4 096, the momentum of 0.9, the linear rate of 1.6 (follow-
ing the rule: learning rate = 0.1× batch size/256), without
a warmup and weight decay. Following [3] and [4], we use
weak data augmentation (only random cropping with hori-
zontal flipping) and apply gradient stopping on the input of
the classifier to prevent updating the encoder.

E.2. SimCLR with Multiple Positives

To train SimCLR with more than one positive view per
anchor, we apply contrastive loss for all possible positive

pairs, considering all views from other images in the batch
as negatives (with a batch of B examples with have m(B−
1) negatives views). Let xb

i denote the i’th view of the b’th
image in a batch, and Pxb

i
denote a set of positive samples

for the anchor xb
i , and Nxb

i
denote a set of positive samples

for the anchor xb
i . Then, the loss is calculated as

LSimCLR =
1

B

B∑
b=1

1

m

m∑
i=1

1∥∥∥Pxb
i

∥∥∥
∑

y∈P
xb
i

− log

(

exp(−d(xb
i , y)/τ)

exp(−d(xb
i , y)/τ) +

∑
z∈N

xb
i

exp(−d(xb
i , z)/τ)

) (5)

where τ is a temperature parameter. This extension of the
SimCLR framework for m > 2 views per image is the same
as used in the SwAV evaluations [1]. Note that in the multi-
crop scenario, we use only full-resolution global views as
positive examples following “local-global” correspondence
idea [1, 2].

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. NeurIPS,
2020. 4

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In ICCV,
2021. 2, 3, 4

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 2, 3, 4

[4] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In CVPR, 2021. 3, 4

[5] Donald E. Knuth. The Art of Computer Programming, Volume
3: Sorting and Searching (2nd Ed.). Addison Wesley, 1998. 3

[6] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and
Stefanie Jegelka. Contrastive learning with hard negative sam-
ples. In ICLR, 2021. 2

[7] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 1

[8] Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert Pless.
Hard negative examples are hard, but useful. In ECCV, 2020.
1

[9] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. 4

