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ImageNet iWildCam Camelyon

Type Linear Full Full
L2-normalization True False False
Optimizer SGD [7] Adam [8] SGD [7]
Scheduler Cosine None None
Epochs 100 12 10
Batch size 128 16 32
Learning rate 6.4 0.00001 0.001
Momentum 0.9 (0.9, 0.999) 0.9
Weight decay 0 0 0.01

Table 1: Fine-tuning design choices. We summarize some
of the design choices for linear probing on ImageNet and
full fine-tuning on other datasets, following [1] and [6].

1. Training details

1.1. Full-shot fine-tuning

We follow MSN [1] for linear-probing and MAE [2] for
full fine-tuning of standard models (see Sec. 2) on Ima-
geNet [3]. For iWildCam [4] and Camelyon [5] datasets,
we follow the WILDS benchmark [6] for fine-tuning design
choices. We summarize some of these in table 1.

1.2. Low-shot training

For low-shot training, we freeze the pre-trained models
and train a classifier on top with the available training data.
Based on the BS-CDFSL study [9], we compare the follow-
ing classifiers and use the best performing one in terms of
in-domain (ID) performance for each dataset:

• Logistic Regression [10]: Linear head is applied on
feature embeddings (optionally L2-normalized) and
trained with a cross-entropy loss. We follow the
implementation of MSN [1] which uses (Resize,
CenterCrop, Normalize) augmentations and
Cyanure [11] package for training and evaluation.

∗Equal contribution; ⋆Project lead; †Currently affiliated with AWS AI
Labs, work done prior to joining.

LogReg [1] Baseline++ [13]

Normalization Layer norm [14] Weight norm [15]
Optimizer auto [11] SGD [7]
Epochs 300 100
Learning rate N/A 0.01
Batch size 16 16
Weight decay 0.0025 0.001

Table 2: Classifier design choices. We summarize some of
the design choices for the different classifiers used for low-
shot training. LogReg stands for Logistic Regression.

• Mean-Centroid Classifier [12]: Per-class cluster em-
beddings are obtained by averaging the feature em-
beddings of every image in the training data for that
class. Then, predicted label for a test image is the
corresponding label of the nearest (in terms of L2 dis-
tance) cluster center.

• Baseline++ [13]: Also uses a linear head but the
logits are obtained via cosine similarity between
head weights and L2-normalized feature embed-
dings. We match their implementation and use
(RandomResizedCrop, ImageJitter,
RandomHorizontalFlip, Normalize) aug-
mentations, and compare design choices in table 2.

We show their comparison with MSN ViTS-16 on differ-
ent datasets in table 3. On average across low-shot regimes,
Logistic Regression performs better on ID and OOD shifts
on ImageNet, better on ID shift and on-par (within 1 %
point) on OOD shift on iWildCam. However, Baseline++
performs better on ID and OOD shifts on Camelyon.

Additional details for CLIP [16]. We use the ViTB-16 and
RN50 models as they have the closest number of parame-
ters to the different models under consideration as shown
in table 6. As with the standard models, we freeze the
pre-trained models and train the classifiers (Baseline++ for
Camelyon, Logisitic Regression for others) with the avail-
able training data. We compare the average performance on
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ImageNet accs. (Top-1) iWildCam accs. (Avg.) Camelyon accs. (Avg.)

ID OOD ID OOD ID OOD

Logistic Regression 58.99 21.51 26.41 19.99 73.85 69.73
Mean Centroid Classifier 57.46 20.5 24.33 20.72 81.12 70.26
Baseline++ 48.6 21.10 17.74 14.62 83.62 75.66

Table 3: Classifier comparison across datasets. We compare the 3 classifiers – Logistic Regression [10, 1], Mean Centroid
Classifier [12], and Baseline++ [13] – on average across low-shot regimes on different datasets with the MSN ViTS-16 model.
Logistic Regression performs better on both ID and OOD shifts on ImageNet, better on ID shift and on-par on OOD shift on
iWildCam. However, Baseline++ performs better on both ID and OOD shifts on Camelyon.

the low-shot regimes (see table 5) for these models in ta-
ble 4, and observe that ViTB-16 significantly outperforms
RN50 on all datasets. Hence we use it for additional exper-
iments with the robustness interventions.

For zero-shot results, we match the implementation of
[17] who use a set of 80 and 2 prompts for ImageNet and
iWildCam respectively. We use the prompt "a photo
of a <class> patch" for Camelyon where class
∈ {normal, tumor} following [6, 17]. More specif-
ically, we initialize the final classification layer of CLIP
ViTB-16 with the zero-shot head constructed via these set
of prompts. Following [17], we also scale the head weights
with CLIP’s temperature parameter and L2-normalize its
outputs before feeding them into the zero-shot head.

2. Standard models and subsets
For obtaining the log-linear curve β(x), we use the fol-

lowing subsets and standard models, i.e. trained on Ima-
geNet without additional robustness interventions:

ImageNet. We use the 1, 2, 5, and ∼13 images per class
subsets provided by [1] for low-shot training. The initial-
izations and model sizes used are:

• MSN [1]: ViTS-16, ViTB-16, and ViTL-16

• DINO [18]: RN50, ViTS-16, and ViTB-16

• SwAV [19]: RN50 and RN50w2

Here, we only use the MSN ViTB-16 and DINO ViTB-
16 models for the full-shot regime due to limited compute.

iWildCam. We create subsets with images in 1%, 5%,
10%, and 20% ratio of the original train shift in WILDS
[6] benchmark while ensuring that each of the 182 classes
have at least one image. These subsets have 1, 370, 6, 510,
12, 973, and 25, 931 images respectively. The standard
models used for this dataset in all data regimes are:

• MSN [1]: ViTS-16 and ViTB-16

• DINO [18]: RN50, ViTS-16, and ViTB-16

• SwAV [19]: RN50 and RN50w2

• DEIT [20]: ViTS-16 and ViTB-16

• Supervised RN50 [21]

Camelyon. We create subsets with 1, 500, 3, 000, 7, 500,
and 15, 000 images per class from train shift in WILDS
[6] benchmark for each of the 2 classes. We use the same
set of models as iWildCam for this dataset.

We summarize these subsets for all datasets in table 5.
For simplicity, we only use the extreme, moderate, and high
low-shot regimes for the rest of our experiments. Our code
and low-shot subsets are publicly available at this url.

3. Robustness interventions
We now describe the design choices and hyperparame-

ters used for all interventions. Our general strategy is to use
the model checkpoint which (a) trains to near completion,
i.e a training accuracy of 98% − 100% and (b) leads to the
highest in-distribution (ID) validation accuracy. Following
[17] who observe that models with similar ID performance
can have vastly different OOD performance, we generally
use the smallest learning rate that meets these criteria.

3.1. LP-FT [23]

LP-FT adopts a two-stage strategy of freezing the pre-
trained model and training a randomly initialized head, fol-
lowed by full fine-tuning the entire model. We mostly fol-
low table 1 for the values of different hyperparameters ex-
cept for the ones described below.

ImageNet. We use the linear probing (LP) hyperparam-
eters provided by MSN [1] as also shown in table 1. For
full fine-tuning in the full-shot regime, we use the MAE
codebase [2] and fine-tune for 20 epochs. In the low-shot
regimes, we use the hyperparameters shown in table 1 ex-
cept a learning rate of 0.0001 for LP-FT following [23].

iWildCam. We do a grid search over the num-
ber of epochs (ep), learning rate (lr), and weight de-
cay (wd) for linear probing and find a combination of
(120, 0.001, 0.001) to work well across models and data
regimes. For ImageNet pre-trained models, we linear probe
for 240 epochs in low-shot regimes and use a combina-
tion of (ep = 12, lr = 0.00001, wd = 0) for full
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ImageNet accs. (Top-1) iWildCam accs. (Avg.) Camelyon accs. (Avg.)

ID OOD ID OOD ID OOD

CLIP ViTB-16 50.80 27.50 23.75 19.1 84.9 77.3
CLIP RN50 35.93 11.24 18.04 14.17 70.24 64.42

Table 4: Architecture comparison with CLIP [16]. We compare the CLIP ViTB-16 architecture with the RN50 variant on
average across low-shot regimes. ViTB-16 significantly outperforms RN50 on both ID and OOD shifts.

Dataset Low-Shot Regimes (Imgs / Class)
Extreme Low Moderate High

ImageNet [3] 1 2 5 ∼ 13
iWildCam [4] 1-480 1-2401 1-4802 1-9604
Camelyon [5] 1500 3000 7500 15000

Table 5: Different Low-Shot Regimes. We use the subsets de-
scribed in this table for fitting the curve β(x) (see Eq. 2). Note that
only the extreme, moderate, and high low-shot regimes are used in
the rest of our experiments for simplicity.

Model Parameters
RN50 [21] 23,508,032
CLIP RN50 [16] 38,316,896
RN50w2 [20] 93,907,072

ViTS-16 [20] 21,664,896
ViTB-16 [20] 85,797,120
ViTB-16 (IN21k) [22] 86,389,248
CLIP ViTB-16 [16] 57,844,224
ViTL-16 [20] 303,299,584

Table 6: Parameter comparison. Comparison of number
of trainable parameters (without classifier) between differ-
ent models in the same architecture family.

fine-tuning. As the intervention is primarily meant for
CLIP, we do a grid search over (ep ∈ {12, 24}, lr ∈
{0.00001, 0.000001}, wd ∈ {0.001, 0.01, 0.0}) and select
the checkpoint with the best ID validation performance.

Camelyon. We do a grid search over the number of
epochs, learning rate, and weight decay for linear probing
and find a combination of (ep = 20, lr = 0.001, wd =
0.001) to work well across models and data regimes. For
ImageNet pre-trained models, we find a combination of
(ep = 12, lr = 0.0001, wd = 0.01) to work well. As
for CLIP, we do a grid search over (ep ∈ {10, 20}, lr ∈
{0.00001, 0.000001}, wd ∈ {0.001, 0.01, 0.0}) and select
the checkpoint with the best ID validation performance.

3.2. WiSE-FT [17]

WiSE-FT ensembles between the weights of a zero-
shot model such as CLIP and this model fine-tuned in the
full-shot regime. The method has a mixing coefficient α

Camelyon accs. (Avg.)

ID OOD

Full-Shot

α = 0 50.48 51.55
α = 0.5 75.68 70.60
α = 1 99.47 94.27

(Average) Low-Shot

α = 0 50.48 51.55
α = 0.5 61.33 59.98
α = 1 91.18 87.71

Table 7: WiSE-FT [17] α comparison. We compare the
ID and OOD performances of WiSE-FT with CLIP for dif-
ferent α values on Camelyon dataset. α = 1 results in sig-
nificantly better performance across data regimes.

which determines the relative weight assigned to the fine-
tuned model with respect to the zero-shot model, i.e. θ =
(1 − α) · θ0 + α · θ1 where θ, θ0, θ1 refer to the weights
of the model after ensembling, the zero-shot model, and the
fine-tuned model respectively.

Since ImageNet pre-trained models such as MSN don’t
have a zero-shot head, we use LP and LP-FT models (see
Sec. 3.1) for the weight space ensemble. For CLIP, we en-
semble between the weights of the pre-trained model with
a zero-shot head (see Sec. 1.2) and this model fine-tuned
fully. For ImageNet, we use the same hyperparameters de-
scribed in section 1 except a learning rate of 0.00001 in the
low-shot regimes for better ID performance. Otherwise, we
perform a grid search over hyperparameters as for LP-FT
(see Sec. 3.1) and select the best ID validation checkpoint.

Following [17], we use an α = 0.5 unless mentioned
otherwise. With CLIP on Camelyon, we search over α ∈
{0, 0.5, 1} and report the α which achieves the highest ID
validation performance, i.e. α = 1. We show this compari-
son with along the OOD performances in table 7.

3.3. Model Soups [24]

Model Soups performs a weight space ensemble with
several models that are fine-tuned with different set of aug-
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Value Range

Epochs [4, 16]
Learning Rate [10−4,10−6]
Weight Decay [10−0.2,10−4]
Label Smoothing [25] [0,0.25]
Mixup [26] [0,0.9]
RandAug [27] M [0,20]
RandAug [27] N [0,2]

Table 8: Model Soups [24] hyperparameters. Value
ranges for each hyperparameter used in the random search.

mentations and optimizer configurations. The associated
hyperparameters for each model in the soup are chosen ran-
domly, and the value ranges following [24] are shown in
table 8. Due to limited compute, we use a greedy soup 1 of
9 models for our experiments in which a fine-tuned model
is greedily added to the soup only if its ID performance is
enhanced after adding the current model to the soup.

3.4. RobustViT [28]

RobustViT uses an unsupervised localization method
such as TokenCut [29] to dump offline segmentation maps
and then optimizes a supervised ViT’s saliency maps [30]
to resemble the offline ones while maintaining its classifica-
tion accuracy to its improve robustness on the OOD shifts
for ImageNet [31, 32, 33, 34, 35].

First, we use TokenCut to dump the segmentation maps
for each of the images in the 1, 5 and ∼13 images per
class subsets. Then, we follow the original authors’ im-
plementation for fine-tuning with the proposed augmenta-
tions, losses, and hyperparameters. However, we find that
these lead to poor performance for self-supervised (SSL)
ViTs such as MSN ViTB-16, likely due to the absence of a
classification head for such models.

Thus, we first perform a linear probing step with the hy-
perparameters used for LP-FT and described in section 3.1
for 50 epochs, and then perform the proposed fine-tuning
with the default hyperparameters. For the full-shot regime,
we use our fine-tuned model checkpoint (see Sec. 1) and
directly perform the proposed fine-tuning step with the 2
images per class subset, as it’s close to the number of im-
ages used in [28]. We find this strategy to work well which
significantly improves robustness of MSN ViTB-16 across
data regimes, as shown in table 5 in the main paper.

For datasets other than ImageNet and especially Came-
lyon which is non object-centric, we note that the method
remains challenging to implement primarily due to the need
of offline segmentation maps.

1We find that this version of the soup performed substantially better
than the uniform soup on iWildCam [4] dataset in all data regimes.

4. Measuring significance for robustness.

The effective (ρ) and relative (τ ) robustness metrics
[31, 36, 17] can be used to determine whether a robustness
intervention r applied on a standard model fs, i.e. fr im-
proves robustness or not (see Sec. 3 in main paper). How-
ever, these metrics don’t inform whether an intervention
which improves robustness does so significantly or not. An
intervention r can technically improve robustness but barely
so, i.e. ρ, τ → 0+. Also, the quality of curve fit β(x) could
be poor (table 4 in main paper) due to which a simple strat-
egy such as ρ > ρ0 and τ > τ0 for some ρ0 and τ0 might
not be suitable. Therefore, we use the standard deviation of
the points used to fit the curve β(x) for measuring signifi-
cance.

Specifically, given a set S of in-domain (ID) and out-of-
distribution (OOD) accuracies of n standard models, i.e.

S = {(acckid, acckood) ∀ k ∈ [n]} (1)

Recall that log-linear curve β(x) is defined as:
β(x) = σ(w logit(x) + b) (2)

where logit(x) = ln 1
1−x and σ is the inverse of the logit

function. Each point in set S is mapped by logit(x) and
β(x) is obtained by using the mapped points to solve linear
regression. Next, we obtain the set of residuals R as:
R = {logit(acckood)− (w logit(acckid) + b) ∀ k ∈ [n]} (3)

We then compute the standard deviation d of the set of
residuals R as:

d =

√∑n
k=1 R

2
k

n− 2
(4)

Next, we define βλ(x) which can be thought of as a
shifted version of β(x), as:

βλ(x) = σ(w x+ b+ λ d) (5)

Finally, we say that an intervention r applied on a stan-
dard model fs, i.e. fr = (accrid, acc

r
ood) significantly

improves robustness if both the following conditions hold:

accrood > βλ(acc
r
id) (6)

accrood > accsood + γ (7)

where λ and γ can be arbitrary, but we opt for λ =
1 and γ = 0 for a milder definition of significance. We
provide the values for w, b, and d to define β(x) and βλ(x)
for each dataset in table 11.

Intuitively, we ask whether the intervention provides an
OOD accuracy that is (1) one standard deviation beyond the
OOD accuracy that can be expected from its ID accuracy
after logit transform and (2) better than the OOD accuracy
of the standard model without the intervention (or τ > 0).
Across multiple data regimes, an intervention is said to sig-
nificantly improve robustness if it does so (Eq. 6 and 7) in
the full-shot regime and on majority of low-shot regimes.
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ImageNet iWildCam Camelyon

ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑
Full-Shot Regime

1 LP-FT [23] 5.16 -0.61 -1.41 -0.17 -0.45 7.48
2 + CLIP 19.60∗ 13.77∗ -3.60 -6.09 0.37 11.28
3 WiSE-FT [17] 6.66 -0.86 -3.84 -5.87 6.22 12.66
4 + CLIP 22.24∗ 16.41∗ 3.98 4.78 2.85 14.18
5 Model Soups [17] 0.53 -10.58 -0.93 -0.14 -0.35 11.68

6 + CLIP 11.00† 4.29† 3.20 -4.84 5.93 9.50
7 RobustViT [28] 6.73 1.13 N/A N/A N/A N/A
8 CLIP zero-shot [16, 17] 30.28 10.79 8.46 -23.17 -14.63 -28.54

Extreme Low-Shot

9 LP-FT [23] 3.71 1.75 -0.62 0.317 6.04 2.46
10 + CLIP 13.85 4.51 3.59 6.24 9.30 8.35
11 WiSE-FT [17] 5.93 3.94 -1.09 0.00 5.62 2.44
12 + CLIP 29.90 39.17 6.87 7.81 -4.03 -4.89
13 Model Soups [24] 6.37 4.41 -1.74 -0.37 5.93 2.93
14 + CLIP 14.60 5.10 0.56 2.63 6.59 9.64
15 RobustViT [28] 6.82 5.32 N/A N/A N/A N/A
16 CLIP zero-shot [16, 17] 30.28 38.68 8.46 2.59 -14.63 -27.41

Moderate Low-Shot

17 LP-FT [23] 0.28 1.97 -0.27 2.62 -0.01 -3.15
18 + CLIP 17.76 15.57 -0.46 3.82 0.07 -3.20
19 WiSE-FT [17] 3.25 4.90 3.51 3.96 -0.37 -2.77
20 + CLIP 29.22 33.99 7.81 10.55 7.61 7.51
21 Model Soups [24] 3.06 4.58 2.12 2.99 -0.17 -1.96
22 + CLIP 21.37 17.82 -0.24 1.39 4.22 -0.77
23 RobustViT [28] 4.38 5.70 N/A N/A N/A N/A
24 CLIP zero-shot [16, 17] 30.28 33.21 8.46 -4.45 -14.63 -27.41

High Low-Shot

25 LP-FT [23] -0.39 2.70 -0.98 6.21 2.14 0.99
26 + CLIP 17.12 19.11 1.62 6.38 -2.39 -5.53
27 WiSE-FT [17] 2.24 5.44 -2.93 3.65 2.34 1.87
28 + CLIP 28.20 32.77 4.35 11.92 6.81 10.55
29 Model Soups [24] 2.21 5.27 -0.41 5.57 2.72 2.84
30 + CLIP 21.65 21.94 0.18 1.48 5.40 4.50
31 RobustViT [28] 2.68 5.51 N/A N/A N/A N/A
32 CLIP zero-shot [16, 17] 30.28 31.79 8.46 -6.643 -14.63 -25.83

Table 9: Robustness intervention comparison. The table shows effective (ρ) and relative (τ ) robustness of different interventions in
the full-shot and low-shot regimes. ∗ and † denote numbers obtained from papers for ViTB-16 and ViTB-32 architecture respectively.
Interventions that do not improve robustness in the full-shot regime are shown in gray, while interventions that do so are shown in black.
Interventions that significantly improve robustness in both the full-shot regime and majority of low-shot regimes are highlighted in blue
for each dataset. Most interventions significantly improve robustness on ImageNet but not on other datasets. Only WiSE-FT with CLIP
significantly improves robustness across datasets and data regimes. Absolute performances for computing τ are shown in table 12.
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Figure 1: Effect of robustness interventions on ImageNet. Plots (a), (b), and (c) show performance of interventions in low-shot regimes
(see table 5). Plot (d) shows performance of interventions in the full-shot regime. Interventions located above the black line (ρ > 0)
and in the blue region (τ > 0) are said to improve robustness. Interventions located above the red line and in the blue region are said to
significantly improve robustness (see Sec. 4). Interventions that significantly improve robustness are shown as opaque, whereas the ones
that only improve robustness are shown as translucent. Most interventions significantly improve robustness across data regimes.

Figure 2: Effect of robustness interventions on iWildCam. Interventions often fail to improve robustness in both the full and low-shot
regimes with MSN ViTB-16. Only WiSE-FT with CLIP ViTB-16 significantly improves robustness in all data regimes.

Figure 3: Effect of robustness interventions on Camelyon. Interventions often improve robustness in the full-shot regime with both
MSN and CLIP ViTB-16 but fail to do so in extreme or moderate low-shot regimes for these models. Only WiSE-FT with CLIP significantly
improves robustness across data regimes. Table 9 shows effective and relative robustness of interventions for further comparison.
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ImageNet iWildCam Camelyon

ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑
Full-Shot Regime

1 LP-FT [23] 6.83 -0.57 2.06 -0.34 1.44 8.57
2 + CLIP 19.60∗ 12.52∗ -3.60 -9.09 0.37 9.54
3 WiSE-FT [17] 9.19 -19.16 1.85 -5.06 4.08 10.13
4 + CLIP 22.24∗ 15.16∗ 3.98 1.77 2.85 12.44

5 Model Soups + CLIP [17] 11.00† 3.04† 3.20 -7.84 5.93 7.75
7 RobustViT [28] 6.34 0.87 N/A N/A N/A N/A
8 CLIP zero-shot [16, 17] 30.28 10.79 8.46 -23.17 -14.63 -28.54

Extreme Low-Shot

9 LP-FT [23] 7.10 2.95 2.04 4.59 9.23 -0.97
10 + CLIP 13.85 6.37 3.56 6.69 -4.03 -12.20
11 WiSE-FT [17] 7.34 3.08 0.52 2.86 9.66 -0.71
12 + CLIP 29.90 41.04 6.87 9.71 6.59 2.23
13 Model Soups + CLIP [24] 14.60 6.97 0.56 3.08 2.54 -10.09
15 RobustViT [28] 8.95 5.41 N/A N/A N/A N/A
16 CLIP zero-shot [16, 17] 30.28 38.68 8.46 2.59 -14.63 -27.41

Moderate Low-Shot

17 LP-FT [23] 5.45 5.14 0.49 5.22 4.83 -4.37
18 + CLIP 17.76 16.16 -0.46 3.17 0.07 -8.12
19 WiSE-FT [17] 7.16 6.10 -0.61 4.50 6.56 -2.32
20 + CLIP 29.22 34.58 7.81 9.90 7.61 2.59
21 Model Soups + CLIP [24] 21.37 18.41 -0.24 0.74 4.22 -5.69
23 RobustViT [28] 8.39 7.77 N/A N/A N/A N/A
24 CLIP zero-shot [16, 17] 30.28 33.21 8.46 -4.45 -14.63 -27.41

High Low-Shot

25 LP-FT [23] 3.61 4.71 1.51 6.44 4.33 -2.51
26 + CLIP 17.12 19.15 1.62 6.06 -2.39 -10.84
27 WiSE-FT [17] 4.99 5.87 2.76 5.57 4.66 -2.25
28 + CLIP 28.20 32.81 4.35 11.60 6.81 5.24
29 Model Soups + CLIP [24] 21.65 21.98 0.18 1.16 5.40 -0.81
31 RobustViT [28] 6.93 8.42 N/A N/A N/A N/A
32 CLIP zero-shot [16, 17] 30.28 31.79 8.46 -6.643 -14.63 -25.83

Table 10: Robustness intervention comparison with DINO ViTB [18] as reference. The table shows effective (ρ) and relative (τ )
robustness of different interventions in the full-shot and low-shot regimes when applied on DINO ViTB-16. ∗ and † denote numbers
obtained from papers for ViTB-16 and ViTB-32 architecture respectively. Interventions that do not improve robustness in the full-shot
regime are shown in gray, while interventions that do so are shown in black. Interventions that significantly improve robustness in both the
full-shot regime and majority of low-shot regimes are highlighted in blue for each dataset. As with MSN (see table 9), most interventions
significantly improve robustness on ImageNet but not on other datasets. Only WiSE-FT with CLIP significantly improves robustness across
datasets and data regimes. Absolute performances for computing τ are shown in table 12.

7



Figure 4: Effect of robustness interventions on ImageNet with DINO [18] as reference. Plots (a), (b), and (c) show performance of
interventions in low-shot regimes (see table 5). Plot (d) shows performance of interventions in the full-shot regime. Interventions located
above the black line (ρ > 0) and in the blue region (τ > 0) are said to improve robustness. Interventions largely improve robustness in
low-shot regimes with DINO ViTB-16 and in all data regimes when coupled with CLIP ViTB-16.

Figure 5: Effect of robustness interventions on iWildCam with DINO [18] as reference. Interventions often improve robustness in the
low-shot regimes but not in the full-shot regime with DINO. Only WiSE-FT with CLIP improves robustness in all data regimes.

We show the effective and relative robustness of the in-
terventions in all datasets and data regimes in table 9. By
default, we use MSN [1] as reference and ViTB-16 models
for applying interventions. To complement these results and
our findings in the main paper, we obtain the curve βλ(x)
(see Eq. 5) for measuring significance. Table 11 shows the
obtained parameter values for the different datasets.

We summarize the results for ImageNet in Fig. 1, iWild-
Cam in Fig. 2, and Camelyon in Fig. 3. While most in-
terventions significantly improve robustness on ImageNet
across data regimes, they fail to do so on iWildCam and
Camelyon datasets. WiSE-FT with CLIP is the only inter-
vention which significantly improves robustness across the
different datasets and data regimes.

For completeness, we also report the mean and standard
deviation of some interventions with CLIP across 2 differ-

ent runs on iWildCam and Camelyon datasets in table 13.
It can be seen that OOD variation can be high even when
ID variation is small, as also observed by [17]. Surpris-
ingly, Model Soups generally exhibits the smallest variance
even though it’s hyperparameters are sampled randomly as
shown in table 8. However, WiSE-FT often leads to much
better performance with relatively small variance.

5. Results for other initializations.

One might ask how dependent our observations are on
the choice of the reference model, i.e. MSN ViTB-16 and
whether other initializations result in the same set of ob-
servations. To answer this, we apply the interventions de-
scribed in Sec. 3 on DINO ViTB-16. The absolute out-
of-distribution (OOD) performances with both models are
shown in table 12. We omit Model Soups with DINO from
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Figure 6: Effect of robustness interventions on Camelyon with DINO [18] as reference. Interventions often improve robustness in the
full-shot regime with both DINO and CLIP ViTB-16 but often fail to do so in the low-shot regimes, except WiSE-FT with CLIP. Table 10
shows effective and relative robustness of interventions with DINO ViTB-16 for further comparison.

Dataset Parameters for βλ(x)

w b d

ImageNet [3] 0.825 -1.609 0.136
iWildCam [4] 0.850 -0.496 0.128
Camelyon [5] 0.325 0.665 0.268

Table 11: Parameters for βλ(x). For each dataset, we list the
values for w, b, and d to obtain the function βλ(x) (see Eq. 5)

Data Regime ImageNet iWildCam Camelyon

MSN DINO MSN DINO MSN DINO

Full-Shot Regime 46.57 47.82 39.98 42.99 80.09 81.83
Extreme Low-Shot 18.69 14.15 14.22 13.77 79.10 86.41
Moderate Low-Shot 24.16 20.60 21.26 21.91 78.96 83.88
High Low-Shot 25.58 22.51 23.46 23.78 77.38 82.69

Table 12: OOD performances of reference models. The table
shows the OOD performances of MSN and DINO ViTB-16 used
to compute relative robustness τ in tables 9 and 10.

this experiment due to limited compute. The dataset-wise
observations are described below.

ImageNet. We show the results of this experiment in
Fig. 4. Similar to the findings for MSN, interventions
are largely effectively and relatively robust in the low-shot
regimes when coupled with DINO. RobustViT also im-
proves robustness in all data regimes. With CLIP ViTB-16,
intervention are effectively and relatively robust in all data
regimes. As shown in table 10, zero-shot CLIP improves
robustness on ImageNet but often fails to do so on other
datasets and data regimes.

iWildCam. We show the results of this experiment in
Fig. 5. With DINO, interventions are often effectively and

Data Regime iWildCam Camelyon

ID OOD ID OOD

Full-Shot

WiSE-FT + CLIP 53.18 ± 0.42 44.92 ± 0.16 99.46 ± 0.01 94.41 ± 0.14
LP-FT + CLIP 49.85 ± 0.31 33.89 ± 1.78 99.22 ± 0.16 87.71 ± 3.65
Model Soups + CLIP 42.39 ± 0.00 35.14 ± 0.00 95.17 ± 0.01 89.58 ± 0.01

Extreme Low-Shot

WiSE-FT + CLIP 19.81 ± 1.36 22.89 ± 0.59 93.17 ± 0.24 88.91 ± 0.17
LP-FT + CLIP 19.86 ± 1.68 19.88 ± 0.58 87.57 ± 0.66 80.80 ± 6.59
Model Soups + CLIP 20.70 ± 0.01 16.84 ± 0.01 75.73 ± 0.01 76.18 ± 0.10

Moderate Low-Shot

WiSE-FT + CLIP 31.75 ± 0.16 31.57 ± 0.25 89.25 ± 1.11 86.83 ± 0.36
LP-FT + CLIP 32.64 ± 1.09 23.93 ± 1.16 81.27 ± 0.29 76.78 ± 1.02
Model Soups + CLIP 28.28 ± 1.27 22.65 ± 0.31 76.65 ± 0.26 78.71 ± 0.36

High Low-Shot

WiSE-FT + CLIP 41.70 ± 0.52 35.44 ± 0.06 91.03 ± 0.95 87.78 ± 0.16
LP-FT + CLIP 37.09 ± 0.3 29.78 ± 0.07 76.13 ± 0.94 71.03 ± 0.82
Model Soups + CLIP 31.29 ± 0.98 25.09 ± 0.11 80.95 ± 1.91 81.03 ± 0.60

Table 13: Performance variance. We report the mean and std.
deviation of some interventions with CLIP across 2 runs. Model
Soups generally exhibits the smallest variance but WiSE-FT often
leads to much better performance with relatively small variance.

relatively robust in the low-shot regimes but neither effec-
tively nor relatively robust in the full-shot regime. As with
MSN, WiSE-FT with CLIP is the only intervention which
improves robustness in all data regimes.

Camelyon. We show the results of this experiment in
Fig. 6. As with MSN, most interventions improve robust-
ness in the full-shot regime and WiSE-FT with CLIP does
so in all data regimes. However, unlike MSN, other inter-
ventions fail to be relatively robust in all low-shot regimes
instead of just the extreme or moderate low-shot regimes.

To complement our findings, we also show the effec-
tive and relative robustness of the interventions on differ-
ent datasets and data regimes in table 10. We follow the
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same procedure for measuring significance as described in
Sec. 4. Consistent with the findings for MSN, we see that
(1) most interventions significantly improve robustness on
ImageNet but not on other datasets and (2) no intervention
significantly improves robustness across datasets and data
regimes, except WiSE-FT with CLIP. Overall, our findings
hold for multiple initializations and show that robustness to
natural shifts on ImageNet and in full-shot regimes might
not imply that on other datasets and in the low-shot regimes.

6. Related works
We describe additional related works that we were un-

able to include in the main paper due to space constraints.
Domain generalization. In domain generalization, the goal
is to generalize to an inaccessible target domain while as-
suming access to one or more fully labelled source domains
[37, 38, 39, 40, 41, 42, 43]. While recent methods often
use vision-language models such as CLIP [16] for impres-
sive robustness gains through strategic fine-tuning [23] or
weight-space ensembles [17, 24], they also rely on abun-
dant labelled data for training which can be prohibitive for
practitioners. Thus, we investigate the effectiveness of these
methods in low-shot regimes on diverse datasets.
Domain adaptation. Domain adaptation (DA) seeks to
transfer a model trained on a source domain to an unseen
target domain. When the target domain doesn’t have labels,
the setting is referred to as unsupervised domain adaptation
(UDA) which has been extensively studied [44, 45, 46, 47,
48, 49, 50, 51]. While a large body of works rely on super-
vised ImageNet initializations for UDA, some works have
focused on self-supervised adaptation with CNNs [52, 53]
and ViTs [54]. Recent works have also studied test-time
adaptation [55, 56, 57] which focuses on online learning,
and few-shot adaptation [58, 59, 60, 61] which is often sim-
ilar to the CD-FSL setting. Crucially, robustness studies and
our study differs from DA and these works by not assuming
access to the target data.
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