ICCV
#7574

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A. Scene Graph Details.
A.l. Details about relationships in scene graphs.

As mentioned in Section 3.1, we use the edges of the
scene graph to encode various kinds of relationships. Note
that all these relationships are directed, therefore are not
commutative in nature. We define three Agent-Object re-
lationships, namely Sees, Holds and Touches. Sees encodes
whether an object is currently within 2.5 meters and in the
field of view of the egocentric camera on the agent. Holds
indicates whether an object is picked up by the agent. We
only use it with the arm based agent [7] for ArmPointNav.
Similarly, Touches is also applicable when using an arm-
based agents. It includes objects that the agent has picked
up, and also the ones that its arm might have collided with.

We have three Object-Object relationships, namely On,
Near and Adjacent. An object is considered Near another
object, if the distance between them is below a certain
threshold. However, for an object to be Adjacent to another,
they need to be Near and also have an unobstructed path
between their centers. We also have Agent-Conditioned
Object-Object spatial relationships that include Right, Left,
Above, Below, Front, and Behind. These relationships are
determined based on the each object’s position relative to
the agent’s coordinate frame. Lastly we define a relation-
ship Contains which can be an Object-Object, Room-Object
or a Room-Agent relationship. For instance, if the agent is
present in the kitchen, the relationship “Kitchen Contains
Agent” would be true.

To summarise, we define the following relationships
between various nodes of the graph:

e Sees ¢ Touches e Holds <+ On

e Near e Adjacent e« Right « Left

¢ Above ¢ Below e Front < Behind
¢ Contains

B. Experiment Details.

In this section, we provide the training and hyperparameter
settings for all our models on Object Navigation (ObjNav),
Multi-Object Navigation (MultiON) and ArmPointNav.

B.1. ObjectNav.

For ObjectNav, an agent is tasked to find a target ob-
ject type (e.g. bed) in an environment. We provide the
target object type in the form of an embedding, and use
forward-facing egocentric RGB images at each time step.
All our ObjectNav models are trained with a simulated Lo-
CoBot [I] agent. The action space consists of MOVEA-
HEAD, ROTATELEFT, ROTATERIGHT, LOOKUP, LOOK-
DoOWN, and END. The rotation degree for ROTATE and
LoOOK actions is 30°. We describe the task and training
details below.

Evaluation. Following [2], an ObjectNav task is considered
successful if:

e The agent terminates the episode by calling the END ac-
tion.

e An instance of the target object type is within a distance
of 1 meter from the agent.

e The object is visible from the agent’s camera. If the object
is occluded behind an obstacle or out of the agent’s view, the
episode is considered unsuccessful.

We also use SPL [2, 3] to evaluate the efficiency of our
agents. If an environment has multiple instances of the tar-
get object type, if the agent navigates to any of those in-
stances, it is considered successful. For calculating the SPL
in such scenarios, the shortest path is defined as the mini-
mum shortest path length from the starting position to any
of the reachable instance of the given type, regardless of
which instance the agent navigates towards.

We evaluate zero-shot on RoboTHOR [4], AI2-
iTHOR [10] and ARCHITECTHOR [6] benchmarks. To
reiterate, zero-shot here implies that no training was per-
formed on any of these benchmarks. Table | shows the
object types used for respective benchmarks. We use the
PRIOR package [5] for loading datasets for all benchmarks.
Training. Each agent is trained using DD-PPO [15], using
a clip parameter € = 0.1, an entropy loss coefficient of 0.01,
and a value loss coefficient of 0.5. We use the reward struc-
ture and model architecture from [8, 6]. We summarize the
training hyperparameters in Table 2.

As mentioned in the main paper, we train our Ob-
jectNav agents in ProcTHOR-train environments from the
ProcTHOR-10k dataset [6]. We train with 16 target object
types shown in Table 1. We train with 48 parallel processes
on 8 NVIDIA RTX A6000 GPUs for 350 million steps. All
the ObjectNav models we present took 6-8 days to train de-
pending on whether they had an auxiliary objective or not.
We follow the strategy proposed in [0] to sample target ob-
ject types during training. Additionally, as we remark in
Section 4.1 (line 478), we present training curves for Ob-
ject Navigation training in Figure 1.

B.2. Multi-ObjectNav.

In Multi-ObjectNav (MultiON), an agent needs to find
multiple target objects in a particular order. We perform
experiments with two variants of this task, MultiON-2 and
MultiON-3 that requires an agent to find 2 and 3 target ob-
jects in an episode, respectively. The action space contains
MOVEAHEAD, ROTATELEFT, ROTATERIGHT, LOOKUP,
LooKDOWN and FOUND actions.

Evaluation. We collect a validation set in 200 ProcTHOR-
Val houses using the same set of target objects presented in
Table 1. The agent needs to issue a FOUND action to indi-
cate if it found the requested object. We build upon the suc-
cess criteria for ObjectNav to define a successful FOUND

ICCV
#7574

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#7574

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Object Type RoboTHOR AI2-iTHOR ARCHITECTHOR
Alarm Clock v v v
Apple v v v
Baseball Bat v v v
Basketball v v v
Bed X v v
Bowl v v v
Chair X v v
Garbage Can v v v
House Plant v v v
Laptop v v v
Mug v v v
Sofa X v v
Spray Bottle v v v
Television v v v
Toilet X v v
Vase v v v

Table 1: Target object types used for each ObjectNav benchmark.

Hyperparameter Value
Discount factor () 0.99
GAE [13] parameter (A) 0.95
Value loss coefficient 0.5
Entropy loss coefficient ~ 0.01
Clip parameter (€) 0.1
Rollout timesteps 20
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [9]
Gradient clip norm 0.5

Table 2: Training hyperparameters for ObjectNav.

Hyperparameter Value

Discount factor () 0.99
GAE [13] parameter (A\) 0.95
Number of RNN Layers 1

Step penalty -0.01
Gradient Steps 128
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [9]
Gradient clip norm 0.5

Table 3: Training hyperparameters for ArmPointNav.

action as:

e An instance of the current target object type is within a
distance of 1 meter from the agent.

0.8-
2 0.6
©
o
a
g 0.41
3
(V)]
0.2
— RL
—— RL + SGC
0.0-

0 50 100 150 200 250 300 350
Number of training steps (in million)
Figure 1: ObjectNav training Plot. We present the train-

ing curves for ObjectNav training for RL and RL 4+ SGC
models.

e The current target object is visible from the agent’s cam-
era. If the target object is occluded or out of the agent’s
view, the FOUND action is considered unsuccessful.

For a MultiON-2 episode to be successful, the agent re-
quires to execute 2 successful FOUND actions. A failed
FOUND action at any point in the episode renders it as a fail-
ure. We extend the same criteria to 3 objects for MultiON-3.
Training. Similar to ObjectNav, we train in ProcTHOR-
train environments from the ProcTHOR-10k dataset [6].
We use the 16 target object types presented in Table 1, and
sample 2 or 3 object types for each episode based on the

ICCV
#7574

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#7574

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Multi-ON variant. We extend the object sampling strat-
egy from [6] to multiple objects to ensure roughly uniform
sampling of target object types. At the beginning of each
episode, we provide the first target object, and provide the
next target object only after a successful FOUND action.
This allows us to use the EmbodiedCLIP [8] Object Navi-
gation architecture. We use the same distance based reward
shaping from [6, 8], and provide a reward of 10.0 for each
successful FOUND action.

Each MultiON agent is trained with DD-PPO [15] using
the same set of hyperparameters as ObjectNav presented in
Table 2. We train with 48 parallel processes on 8§ NVIDIA
RTX A6000 GPUs for 180 million steps. Training takes 2
days with just RL and 5 days with the RL + SGC baseline.

B.3. ArmPointNav.

For ArmPointNav, we follow the same architecture
as [7] with the exception of using a CLIP-pretrained frozen
ResNet-50 encoder as our visual backbone instead of a 3-
layer CNN. Our motivation for this design choice was im-
proved results for the RL model with the CLIP backbone.
Therefore, we use CLIP-pretrained ResNet-50 for both RL
and RL + SGC models. We use the manipulathor [7] agent,
which is equipped with a kinova arm. The action space for
the ArmPointNav agent includes three navigation actions
(MOVEAHEAD, ROTATELEFT, and ROTATERIGHT), with
rotations of 45 degrees. It also has 8 arm-based actions,
namely MOVE-ARM-{X,Y,Z}-{P,M}, which allow the wrist
to move in a plus (P) or minus (M) direction relative to the
agent along the (X,Y,z) axis, and MOVE-ARM-HEIGHT-
{P,M}, which modifies the arm height.

Evaluation. We evaluate our model on the validation set
from [7]. The task requires the agent to move a target object
from a starting location to a goal location using the relative
location of the target in the agent’s coordinate. It only uses
egocentric RGB observation as its visual input.

Training. Following [6], we train our ArmPointNav models
on a subset of 7,000 houses with 58 object categories. For
each training episode, we teleport the agent to a random lo-
cation, randomly sample a pickupable object, and randomly
sample a target location. We train our models for 90 million
steps on 8 NVIDIA RTX A6000s. We list the training hy-
perparameters in Table 3. Training takes 80 hours with just
RL and 100 hours with RL + SGC. We note that SGC is
applied to 20% of the steps in a batch.

B.4. Adapting to Novel Object Categories.

As presented in Section 4.5.2 in the main draft, we show
that models trained with SGC are able to adapt to novel ob-
ject categories much faster. We provide the 10 sets of 5
Object Categories sampled for this experiment in Table 4.
We also provide the larger pool of 80+ categories that they
were sampled from in Table 5.

Setl Pot, Egg, CellPhone, CD, ToiletPaper

Set2 CellPhone, Faucet, Fork, Desktop, Box

Set3 Newspaper, Lettuce, ButterKnife, Spatula, CellPhone

Set4 Lettuce, Faucet, CoffeeMachine, Pot, Stool

Set5 TeddyBear, SideTable, Lettuce, DeskLamp, CoffeeMachine
Set6 TVStand, Safe, Desktop, Ottoman, Tomato

Set7 WashingMachine, Toaster, SideTable, Plunger, Desk

Set8 Drawer, Statue, Toaster, Fridge, Newspaper

Set9 Microwave, FloorLamp, Sink, DiningTable, Stool

Setl0 Drawer, SinkBasin, LaundryHamper, DeskLamp, Sink

Table 4: Sets of randomly sampled object categories.

C. Linear Probing Details.

Data capture. We collect data from about 5 episodes in
each of approx. 2,500 ProcTHOR-10K [6] houses, using an
exploration policy that iteratively visits the nearest unvisited
reachable object in the house until no more objects are left
to visit. During the trajectory, we store the current scene
graph, both RL and RL + SGC agents’ beliefs, and envi-
ronment metadata like agent pose and scene name.

Processing pipeline. For each probing experiment, given
the collected beliefs and task-dependent binary labels, we
subsample the collected data to produce a compact set of
training samples. In order to improve numerical stability,
we compress the beliefs via PCA, ensuring 99% of the data
variance is explained. We fit a logistic regression model on
the compressed training dataset, and evaluate on an (also
compressed) held-out test set. The used implementations
for PCA and logistic regression are from [12].

Reachability. For these experiments, we define reachability
as whether a location at an Euclidean distance R from the
agent and with relative orientation 6 is “free-space” (i.e.,
can be occupied by the agent without collision). The free
space of a scene is estimated by applying marching squares
[11, 14] with a threshold level of 0.9999 to its binary grid of
reachability (with {0, 1} indicating {occupied, free} space).
We consider three concentric circumferences around the
agent’s current location and locate points on these circum-
ferences that are at 30° spaced angles with respect to the
agent’s current orientation, resulting in 36 unique relative
locations. Each of the 36 relative locations is used as a tar-
get variable. In these experiments we use 20,000 data points
for each of the 36 target variables, of which 18,000 are for
training and 2,000 for testing. We sample these data points
so that negative and positive samples are balanced for each
target variable, both for training and for testing. All accu-
racy metrics provided for this task are thus “balanced accu-
racy” rather than standard accuracy. We fit the 36 models
using the processing pipeline described above.

Visibility. In these experiments we subsample 40,000 data-
points of which 33,000 are used for training, 2,000 for vali-
dation, and 5,000 for testing. In order to estimate an agent’s

ICCV
#7574

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#7574

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ArmChair, Book, Boots, Bottle, Box, Bread, ButterKnife, CD, Cabinet, Candle, Cart, Cellphone, Cloth,
ClothesDryer, CoffeeMachine, CoffeeTable, CounterTop, CreditCard, Cup, Desk, DeskLamp, Desktop,
DiningTable, DishSponge, DogBed, Doorframe, Doorway, Drawer, Dresser, Dumbbell, Egg, Faucet, Floor,
FloorLamp, Fork, Fridge, GarbageBag, Kettle, KeyChain, Knife, Ladle, LaundryHamper, Lettuce, Microwave,
Newspaper, Ottoman, Painting, Pan, PaperTowelRoll, Pen, Pencil, PepperShaker, Pillow, Plate, Plunger, Pot,
Potato, RemoteControl, RoomDecor, Safe, SaltShaker, Shelf, ShelvingUnit, SideTable, Sink, SinkBasin, SoapBar,
SoapBottle, Spatula, Spoon, Statue, Stool, TV Stand, TableTopDecor, TeddyBear, TennisRacket, TissueBox,
Toaster, ToiletPaper, Tomato, VacuumCleaner, Wall, WashingMachine, Watch, Window, WineBottle

Table 5: List of All Object Types.

understanding of visibility, we record, at every sampled lo-
cation, which objects where visible to the agent within a
2.5 meters range. As most objects will not be visible at
any given agent position, naively sampling the 40,000 data-
points above would result in many objects having almost no
positive (i.e. visible) examples. Because of this, we use an
iterative sampling procedure that prioritizes selecting sam-
ples which contain instances of visible objects that are oth-
erwise underrepresented in the dataset. Even using this it-
erative approach there is significant class imbalance with
objects of type ROOMDECOR being visible in only 2% of
datapoints (the minimum across all object types) while the
PAINTING objects are visible in 20% (the maximum across
all object types). For this reason, when we fit separate logis-
tic regression models to predict visibility for each of these
object types we reweigh samples so as to ensure that the
negative and positive examples have, in total, equal impor-
tance. When computing accuracy metrics we thus also use
the “balanced accuracy” rather than the standard accuracy
which would overweigh negative examples in this setting.
In the main paper we also report results when fitting mod-
els exactly as above but using, as target, whether or not an
object was visible at the current timestep or any previous
time step in the episode so far. These additional results give
insight into the agents’ ability to remember having seen ob-
jects in the past.

Revisited state detection. In addition to the two probing
experiments described in the main paper, we also probe for
the detection of revisited states. We quantize the current
agent pose relative to the one at the beginning of the episode
using square cells of 0.25 x 0.25 m? for location and arcs
of 30 degrees for rotation. We treat each pair of relative
grid location and rotation as a separate state. In these ex-
periments we use 20,000 data points, of which 18,000 are
for training and 2,000 for testing. The RL + SGC agent
achieves 56.20% balanced accuracy, whereas the RL-only
agent reaches 52.10% on this task.

D. Loss Behavior.

To show the SGC loss predictions, we present a plot of
prediction probabilities for our ObjectNav RL + SGC model

Figure 2: Graph Loss Plot.

in Figure 2. We show the plot with 18 rollout steps across
2 parallel processes i.e. with a total batch size of 36. Note
how the predictions are concentrated around the diagonal
which is akin to the ground truth present in Figure 3 of the
main paper. It is also interesting to see some deviations
from the diagonal, which shows that there is some scope to
optimize the loss even better and potentially lead to more
performance benefits. These deviations arise from scene
graphs from nearby time steps in the same episode being
very slightly different, making it harder to classify them.

E. ObjectNav Qualitative Analysis.

We visualize some trajectories and provide qualitative
analysis on how SGC is affecting the ObjectNav behavior.
We attach the videos and trajectory maps with the supple-
mentary zip file. Each trajectory map shows the top down

ICCV
#7574

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
M7
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#7574

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
47
472
473
474
475
476
477
478
479
480
481
482
483
484
485

ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

view of the path traversed by the agent. It also indicates the
target object location by a purple box. We indicate the tar-
get object type and the number of steps on the bottom left
corner of the frame in the trajectory videos.

ARCHITECTHOR. Firstly we show some top-down tra-
jectories in ARCHITECTHOR environments (Fig. 3), not-
ing the floor plans’ large scale and photorealism. Example
1 shows the ObjectNav agents trying to find a spray bot-
tle. The RL-only model looks into one part of the house,
then terminates the trajectory unsuccessfully, whereas RL
+ SGC is able to navigate to the bathroom and successfully
finds the target.

Example 2 shows an example where the RL-only agent
falsely recognizes the microwave as a television. The RL
+ SGC agent also starts by checking the kitchen and the
microwave, then turns around and explores another region
and is able to find the television successfully.

Example 3 shows an interesting failure case for both RL
and RL 4 SGC models. The target object is a vase. The RL-
only agent looks for the vase in the area around the dining
table and then terminates the trajectory failing to find the
target. The trajectory map shows the limited exploration of
this model.

On the other hand, even though the RL 4+ SGC agent
fails to find the target, it explores the room in a much more
exhaustive fashion as can be seen in the respective trajectory
map. It exhausts the maximum number of steps allowed and
times out instead of falsely calling an END action.

RoboTHOR. We show three qualitative examples from
the RoboTHOR benchmark as well (Fig. 4). They all seem
to highlight the inability of the RL-only agent to explore
the scene, which leads to unsuccessful termination of the
episode. On the other hand, the RL + SGC agent explores
the region it starts in and then goes to different parts of the
scene, which eventually allows it to succeed.

References

[1] Carnegie mellon university. locobot: an open source low cost
robot. http://www.locobot.org/. 1

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. ArXiv, 2018. 1

[3] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-
sandr Maksymets, Roozbeh Mottaghi, Manolis Savva,
Alexander Toshev, and Erik Wijmans. Objectnav revisited:
On evaluation of embodied agents navigating to objects.
ArXiv, 2020. 1

[4] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

(14]

(15]

Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. RoboTHOR: An
Open Simulation-to-Real Embodied Al Platform. In CVPR,
2020. 1

Matt Deitke, Aniruddha Kembhavi, and Luca Weihs.
PRIOR: A Python Package for Seamless Data Distribution
in Al Workflows, 2022. 1

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Jordi Salvador, Kiana Ehsani, Winson Han, Eric Kolve,
Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi.
ProcTHOR: Large-Scale Embodied AI Using Procedural
Generation. 2022. 1,2, 3

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt,
Luca Weihs, Eric Kolve, Aniruddha Kembhavi, and Roozbeh
Mottaghi. ManipulaTHOR: A Framework for Visual Object
Manipulation. In CVPR, 2021. 1, 3

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Simple but effective: Clip embed-
dings for embodied ai. CVPR, 2022. 1,3

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015. 2
Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual Al. arXiv, 2017. 1

William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In Mau-
reen C. Stone, editor, Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1987, Anaheim, California, USA, July 27-31,
1987, pages 163-169. ACM, 1987. 3

FE. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Wesiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. 3

John Schulman, Philipp Moritz, Sergey Levine, Michael I.
Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. /CLR, 2016. 2
Stéfan van der Walt, Johannes L. Schonberger, Juan Nunez-
Iglesias, Frangois Boulogne, Joshua D. Warner, Neil Yager,
Emmanuelle Gouillart, and Tony Yu. scikit-image: Image
processing in python. CoRR, abs/1407.6245, 2014. 3

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Ir-
fan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra. DD-
PPO: learning near-perfect pointgoal navigators from 2.5 bil-
lion frames. ICLR, 2020. 1, 3

ICCV
#7574

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV ICCV

#7574 #7574
ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

540 RL-only RL + SGC 594
541 595
542 596
543 597
544 598
545 599
546 600
547 601
548 602
549 603
550 604
551 605
552 606
553 607
554 608
555 609
556 610
557 611
558 612
559 613
560 614
561 615
562 616
563 617
564 618
565 619
566 620
567 621
568 622
569 623
570 624
571 625
572 626
573 627
574 628
575 629
576 630
577 631
578 632
579 633
580 634
581 635
582 636
583 637
584 638
585 639
586 640
587 641
588 642
589 . . 643
90 Example 3. Target object type: Vase. caa
591 Figure 3: Top-down trajectories for RL-only and RL + SGC agents in ARCHITECTHOR. Examples 1 and 2 correspond 645
592 to successful trajectories for the RL + SGC agent, whereas Example 3 shows different behaviors for failed episodes. The tar- 646
593 get object type in each episode is highlighted in magenta. For the trajectory lines, {white, red} correspond to the {beginning, 647

end} of each episode.

ICCV ICCV

#7574 #7574
ICCV 2023 Submission #7574. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

648 702
649 RL-only RL + SGC 203
650 704
651 705
652 706
653 707
654 708
655 709
656 710
657 711
658 712
659 713
660 714
661 715
662 716
663 717
664 718
665 Example 1. Target object type: Spray bottle. 719
666 720
667 721
668 722
669 723
670 724
671 725
672 726
673 727
674 728
675 729
676 730
677 731
678 732
679 733
680 734
681 Example 2. Target object type: Baseball bat. 735
682 736
683 737
684 738
685 739
686 740
687 741
688 742
689 743
690 744
691 745
692 746
693 747
694 748
695 749
696 750
697 . 751
698 Example 3. Target object type: Mug. 752
523 Figure 4 ’I.‘op-flown t.:rajectories for RL-oply and.RL + SGC agents in RoboTHOR. Tl}e: Farget object type iq each ;Zi
201 episode is highlighted in magenta. For the trajectory lines, {white, red} correspond to the {beginning, end} of each episode. -

