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A. Scene Graph Details.
A.l. Details about relationships in scene graphs.

As mentioned in Section 3.1, we use the edges of the
scene graph to encode various kinds of relationships. Note
that all these relationships are directed, therefore are not
commutative in nature. We define three Agent-Object re-
lationships, namely Sees, Holds and Touches. Sees encodes
whether an object is currently within 2.5 meters and in the
field of view of the egocentric camera on the agent. Holds
indicates whether an object is picked up by the agent. We
only use it with the arm based agent [7] for ArmPointNav.
Similarly, Touches is also applicable when using an arm-
based agents. It includes objects that the agent has picked
up, and also the ones that its arm might have collided with.

We have three Object-Object relationships, namely On,
Near and Adjacent. An object is considered Near another
object, if the distance between them is below a certain
threshold. However, for an object to be Adjacent to another,
they need to be Near and also have an unobstructed path
between their centers. We also have Agent-Conditioned
Object-Object spatial relationships that include Right, Left,
Above, Below, Front, and Behind. These relationships are
determined based on the each object’s position relative to
the agent’s coordinate frame. Lastly we define a relation-
ship Contains which can be an Object-Object, Room-Object
or a Room-Agent relationship. For instance, if the agent is
present in the kitchen, the relationship “Kitchen Contains
Agent” would be true.

To summarise, we define the following relationships
between various nodes of the graph:

e Sees ¢ Touches e Holds <+ On

e Near e Adjacent e« Right « Left

¢ Above ¢ Below e Front < Behind
¢ Contains

B. Experiment Details.

In this section, we provide the training and hyperparameter
settings for all our models on Object Navigation (ObjNav),
Multi-Object Navigation (MultiON) and ArmPointNav.

B.1. ObjectNav.

For ObjectNav, an agent is tasked to find a target ob-
ject type (e.g. bed) in an environment. We provide the
target object type in the form of an embedding, and use
forward-facing egocentric RGB images at each time step.
All our ObjectNav models are trained with a simulated Lo-
CoBot [I] agent. The action space consists of MOVEA-
HEAD, ROTATELEFT, ROTATERIGHT, LOOKUP, LOOK-
DoOWN, and END. The rotation degree for ROTATE and
LoOOK actions is 30°. We describe the task and training
details below.

Evaluation. Following [2], an ObjectNav task is considered
successful if:

e The agent terminates the episode by calling the END ac-
tion.

e An instance of the target object type is within a distance
of 1 meter from the agent.

e The object is visible from the agent’s camera. If the object
is occluded behind an obstacle or out of the agent’s view, the
episode is considered unsuccessful.

We also use SPL [2, 3] to evaluate the efficiency of our
agents. If an environment has multiple instances of the tar-
get object type, if the agent navigates to any of those in-
stances, it is considered successful. For calculating the SPL
in such scenarios, the shortest path is defined as the mini-
mum shortest path length from the starting position to any
of the reachable instance of the given type, regardless of
which instance the agent navigates towards.

We evaluate zero-shot on RoboTHOR [4], AI2-
iTHOR [10] and ARCHITECTHOR [6] benchmarks. To
reiterate, zero-shot here implies that no training was per-
formed on any of these benchmarks. Table | shows the
object types used for respective benchmarks. We use the
PRIOR package [5] for loading datasets for all benchmarks.
Training. Each agent is trained using DD-PPO [15], using
a clip parameter € = 0.1, an entropy loss coefficient of 0.01,
and a value loss coefficient of 0.5. We use the reward struc-
ture and model architecture from [8, 6]. We summarize the
training hyperparameters in Table 2.

As mentioned in the main paper, we train our Ob-
jectNav agents in ProcTHOR-train environments from the
ProcTHOR-10k dataset [6]. We train with 16 target object
types shown in Table 1. We train with 48 parallel processes
on 8 NVIDIA RTX A6000 GPUs for 350 million steps. All
the ObjectNav models we present took 6-8 days to train de-
pending on whether they had an auxiliary objective or not.
We follow the strategy proposed in [0] to sample target ob-
ject types during training. Additionally, as we remark in
Section 4.1 (line 478), we present training curves for Ob-
ject Navigation training in Figure 1.

B.2. Multi-ObjectNav.

In Multi-ObjectNav (MultiON), an agent needs to find
multiple target objects in a particular order. We perform
experiments with two variants of this task, MultiON-2 and
MultiON-3 that requires an agent to find 2 and 3 target ob-
jects in an episode, respectively. The action space contains
MOVEAHEAD, ROTATELEFT, ROTATERIGHT, LOOKUP,
LooKDOWN and FOUND actions.

Evaluation. We collect a validation set in 200 ProcTHOR-
Val houses using the same set of target objects presented in
Table 1. The agent needs to issue a FOUND action to indi-
cate if it found the requested object. We build upon the suc-
cess criteria for ObjectNav to define a successful FOUND
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Object Type  RoboTHOR  AI2-iTHOR ARCHITECTHOR
Alarm Clock v v v
Apple v v v
Baseball Bat v v v
Basketball v v v
Bed X v v
Bowl v v v
Chair X v v
Garbage Can v v v
House Plant v v v
Laptop v v v
Mug v v v
Sofa X v v
Spray Bottle v v v
Television v v v
Toilet X v v
Vase v v v

Table 1: Target object types used for each ObjectNav benchmark.

Hyperparameter Value
Discount factor () 0.99
GAE [13] parameter (A) 0.95
Value loss coefficient 0.5
Entropy loss coefficient ~ 0.01
Clip parameter (€) 0.1
Rollout timesteps 20
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [9]
Gradient clip norm 0.5

Table 2: Training hyperparameters for ObjectNav.

Hyperparameter Value

Discount factor () 0.99
GAE [13] parameter (A\) 0.95
Number of RNN Layers 1

Step penalty -0.01
Gradient Steps 128
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [9]
Gradient clip norm 0.5

Table 3: Training hyperparameters for ArmPointNav.

action as:

e An instance of the current target object type is within a
distance of 1 meter from the agent.

0.8-
2 0.6
©
o
a
g 0.41
3
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— RL
—— RL + SGC
0.0-
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Number of training steps (in million)
Figure 1: ObjectNav training Plot. We present the train-

ing curves for ObjectNav training for RL and RL 4+ SGC
models.

e The current target object is visible from the agent’s cam-
era. If the target object is occluded or out of the agent’s
view, the FOUND action is considered unsuccessful.

For a MultiON-2 episode to be successful, the agent re-
quires to execute 2 successful FOUND actions. A failed
FOUND action at any point in the episode renders it as a fail-
ure. We extend the same criteria to 3 objects for MultiON-3.
Training. Similar to ObjectNav, we train in ProcTHOR-
train environments from the ProcTHOR-10k dataset [6].
We use the 16 target object types presented in Table 1, and
sample 2 or 3 object types for each episode based on the
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Multi-ON variant. We extend the object sampling strat-
egy from [6] to multiple objects to ensure roughly uniform
sampling of target object types. At the beginning of each
episode, we provide the first target object, and provide the
next target object only after a successful FOUND action.
This allows us to use the EmbodiedCLIP [8] Object Navi-
gation architecture. We use the same distance based reward
shaping from [6, 8], and provide a reward of 10.0 for each
successful FOUND action.

Each MultiON agent is trained with DD-PPO [15] using
the same set of hyperparameters as ObjectNav presented in
Table 2. We train with 48 parallel processes on 8§ NVIDIA
RTX A6000 GPUs for 180 million steps. Training takes 2
days with just RL and 5 days with the RL + SGC baseline.

B.3. ArmPointNav.

For ArmPointNav, we follow the same architecture
as [7] with the exception of using a CLIP-pretrained frozen
ResNet-50 encoder as our visual backbone instead of a 3-
layer CNN. Our motivation for this design choice was im-
proved results for the RL model with the CLIP backbone.
Therefore, we use CLIP-pretrained ResNet-50 for both RL
and RL + SGC models. We use the manipulathor [7] agent,
which is equipped with a kinova arm. The action space for
the ArmPointNav agent includes three navigation actions
(MOVEAHEAD, ROTATELEFT, and ROTATERIGHT), with
rotations of 45 degrees. It also has 8 arm-based actions,
namely MOVE-ARM-{X,Y,Z}-{P,M}, which allow the wrist
to move in a plus (P) or minus (M) direction relative to the
agent along the (X,Y,z) axis, and MOVE-ARM-HEIGHT-
{P,M}, which modifies the arm height.

Evaluation. We evaluate our model on the validation set
from [7]. The task requires the agent to move a target object
from a starting location to a goal location using the relative
location of the target in the agent’s coordinate. It only uses
egocentric RGB observation as its visual input.

Training. Following [6], we train our ArmPointNav models
on a subset of 7,000 houses with 58 object categories. For
each training episode, we teleport the agent to a random lo-
cation, randomly sample a pickupable object, and randomly
sample a target location. We train our models for 90 million
steps on 8 NVIDIA RTX A6000s. We list the training hy-
perparameters in Table 3. Training takes 80 hours with just
RL and 100 hours with RL + SGC. We note that SGC is
applied to 20% of the steps in a batch.

B.4. Adapting to Novel Object Categories.

As presented in Section 4.5.2 in the main draft, we show
that models trained with SGC are able to adapt to novel ob-
ject categories much faster. We provide the 10 sets of 5
Object Categories sampled for this experiment in Table 4.
We also provide the larger pool of 80+ categories that they
were sampled from in Table 5.

Setl Pot, Egg, CellPhone, CD, ToiletPaper

Set2 CellPhone, Faucet, Fork, Desktop, Box

Set3 Newspaper, Lettuce, ButterKnife, Spatula, CellPhone

Set4 Lettuce, Faucet, CoffeeMachine, Pot, Stool

Set5 TeddyBear, SideTable, Lettuce, DeskLamp, CoffeeMachine
Set6 TVStand, Safe, Desktop, Ottoman, Tomato

Set7 WashingMachine, Toaster, SideTable, Plunger, Desk

Set8 Drawer, Statue, Toaster, Fridge, Newspaper

Set9 Microwave, FloorLamp, Sink, DiningTable, Stool

Setl0  Drawer, SinkBasin, LaundryHamper, DeskLamp, Sink

Table 4: Sets of randomly sampled object categories.

C. Linear Probing Details.

Data capture. We collect data from about 5 episodes in
each of approx. 2,500 ProcTHOR-10K [6] houses, using an
exploration policy that iteratively visits the nearest unvisited
reachable object in the house until no more objects are left
to visit. During the trajectory, we store the current scene
graph, both RL and RL + SGC agents’ beliefs, and envi-
ronment metadata like agent pose and scene name.

Processing pipeline. For each probing experiment, given
the collected beliefs and task-dependent binary labels, we
subsample the collected data to produce a compact set of
training samples. In order to improve numerical stability,
we compress the beliefs via PCA, ensuring 99% of the data
variance is explained. We fit a logistic regression model on
the compressed training dataset, and evaluate on an (also
compressed) held-out test set. The used implementations
for PCA and logistic regression are from [12].

Reachability. For these experiments, we define reachability
as whether a location at an Euclidean distance R from the
agent and with relative orientation 6 is “free-space” (i.e.,
can be occupied by the agent without collision). The free
space of a scene is estimated by applying marching squares
[11, 14] with a threshold level of 0.9999 to its binary grid of
reachability (with {0, 1} indicating {occupied, free} space).
We consider three concentric circumferences around the
agent’s current location and locate points on these circum-
ferences that are at 30° spaced angles with respect to the
agent’s current orientation, resulting in 36 unique relative
locations. Each of the 36 relative locations is used as a tar-
get variable. In these experiments we use 20,000 data points
for each of the 36 target variables, of which 18,000 are for
training and 2,000 for testing. We sample these data points
so that negative and positive samples are balanced for each
target variable, both for training and for testing. All accu-
racy metrics provided for this task are thus “balanced accu-
racy” rather than standard accuracy. We fit the 36 models
using the processing pipeline described above.

Visibility. In these experiments we subsample 40,000 data-
points of which 33,000 are used for training, 2,000 for vali-
dation, and 5,000 for testing. In order to estimate an agent’s
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ArmChair, Book, Boots, Bottle, Box, Bread, ButterKnife, CD, Cabinet, Candle, Cart, Cellphone, Cloth,
ClothesDryer, CoffeeMachine, CoffeeTable, CounterTop, CreditCard, Cup, Desk, DeskLamp, Desktop,
DiningTable, DishSponge, DogBed, Doorframe, Doorway, Drawer, Dresser, Dumbbell, Egg, Faucet, Floor,
FloorLamp, Fork, Fridge, GarbageBag, Kettle, KeyChain, Knife, Ladle, LaundryHamper, Lettuce, Microwave,
Newspaper, Ottoman, Painting, Pan, PaperTowelRoll, Pen, Pencil, PepperShaker, Pillow, Plate, Plunger, Pot,
Potato, RemoteControl, RoomDecor, Safe, SaltShaker, Shelf, ShelvingUnit, SideTable, Sink, SinkBasin, SoapBar,
SoapBottle, Spatula, Spoon, Statue, Stool, TV Stand, TableTopDecor, TeddyBear, TennisRacket, TissueBox,
Toaster, ToiletPaper, Tomato, VacuumCleaner, Wall, WashingMachine, Watch, Window, WineBottle

Table 5: List of All Object Types.

understanding of visibility, we record, at every sampled lo-
cation, which objects where visible to the agent within a
2.5 meters range. As most objects will not be visible at
any given agent position, naively sampling the 40,000 data-
points above would result in many objects having almost no
positive (i.e. visible) examples. Because of this, we use an
iterative sampling procedure that prioritizes selecting sam-
ples which contain instances of visible objects that are oth-
erwise underrepresented in the dataset. Even using this it-
erative approach there is significant class imbalance with
objects of type ROOMDECOR being visible in only 2% of
datapoints (the minimum across all object types) while the
PAINTING objects are visible in 20% (the maximum across
all object types). For this reason, when we fit separate logis-
tic regression models to predict visibility for each of these
object types we reweigh samples so as to ensure that the
negative and positive examples have, in total, equal impor-
tance. When computing accuracy metrics we thus also use
the “balanced accuracy” rather than the standard accuracy
which would overweigh negative examples in this setting.
In the main paper we also report results when fitting mod-
els exactly as above but using, as target, whether or not an
object was visible at the current timestep or any previous
time step in the episode so far. These additional results give
insight into the agents’ ability to remember having seen ob-
jects in the past.

Revisited state detection. In addition to the two probing
experiments described in the main paper, we also probe for
the detection of revisited states. We quantize the current
agent pose relative to the one at the beginning of the episode
using square cells of 0.25 x 0.25 m? for location and arcs
of 30 degrees for rotation. We treat each pair of relative
grid location and rotation as a separate state. In these ex-
periments we use 20,000 data points, of which 18,000 are
for training and 2,000 for testing. The RL + SGC agent
achieves 56.20% balanced accuracy, whereas the RL-only
agent reaches 52.10% on this task.

D. Loss Behavior.

To show the SGC loss predictions, we present a plot of
prediction probabilities for our ObjectNav RL + SGC model

Figure 2: Graph Loss Plot.

in Figure 2. We show the plot with 18 rollout steps across
2 parallel processes i.e. with a total batch size of 36. Note
how the predictions are concentrated around the diagonal
which is akin to the ground truth present in Figure 3 of the
main paper. It is also interesting to see some deviations
from the diagonal, which shows that there is some scope to
optimize the loss even better and potentially lead to more
performance benefits. These deviations arise from scene
graphs from nearby time steps in the same episode being
very slightly different, making it harder to classify them.

E. ObjectNav Qualitative Analysis.

We visualize some trajectories and provide qualitative
analysis on how SGC is affecting the ObjectNav behavior.
We attach the videos and trajectory maps with the supple-
mentary zip file. Each trajectory map shows the top down
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view of the path traversed by the agent. It also indicates the
target object location by a purple box. We indicate the tar-
get object type and the number of steps on the bottom left
corner of the frame in the trajectory videos.

ARCHITECTHOR. Firstly we show some top-down tra-
jectories in ARCHITECTHOR environments (Fig. 3), not-
ing the floor plans’ large scale and photorealism. Example
1 shows the ObjectNav agents trying to find a spray bot-
tle. The RL-only model looks into one part of the house,
then terminates the trajectory unsuccessfully, whereas RL
+ SGC is able to navigate to the bathroom and successfully
finds the target.

Example 2 shows an example where the RL-only agent
falsely recognizes the microwave as a television. The RL
+ SGC agent also starts by checking the kitchen and the
microwave, then turns around and explores another region
and is able to find the television successfully.

Example 3 shows an interesting failure case for both RL
and RL 4 SGC models. The target object is a vase. The RL-
only agent looks for the vase in the area around the dining
table and then terminates the trajectory failing to find the
target. The trajectory map shows the limited exploration of
this model.

On the other hand, even though the RL 4+ SGC agent
fails to find the target, it explores the room in a much more
exhaustive fashion as can be seen in the respective trajectory
map. It exhausts the maximum number of steps allowed and
times out instead of falsely calling an END action.

RoboTHOR. We show three qualitative examples from
the RoboTHOR benchmark as well (Fig. 4). They all seem
to highlight the inability of the RL-only agent to explore
the scene, which leads to unsuccessful termination of the
episode. On the other hand, the RL + SGC agent explores
the region it starts in and then goes to different parts of the
scene, which eventually allows it to succeed.
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