
Supplementary Materials for Neural Haircut: Prior-Guided Strand-Based Hair
Reconstruction

Vanessa Sklyarova1 Jenya Chelishev2,∗ Andreea Dogaru3,∗ Igor Medvedev1

Victor Lempitsky4 Egor Zakharov1

1Samsung AI Center 2Rockstar Games 3FAU Erlangen-Nürnberg 4Cinemersive Labs

1. Implementation and training details
1.1. Datasets preprocessing

We train our hair priors on the publicly available USC-
HairSalon [12] synthetic dataset, which consists of 343
hairstyles with up to 10,000 strands aligned with a tem-
plate bust mesh. Additionally, we match the FLAME head
mesh [18] with the template and obtain a UV mapping for
the scalp region using Blender[6]. We evaluate our method
using real-world H3DS [27] multi-view dataset, monocular
videos, and synthetic Cem Yuksel’s Hair Models [40].

USC-HairSalon. To train a parametric prior for individ-
ual hair strands, we follow [29] approach to pre-processing.
We map each strand into a local tangent-bitangent-normal
(TBN) basis using the vertices from the closest face to its
root location on the FLAME head mesh. While the normal
vector in this basis is calculated using the head mesh and
is therefore consistent for nearby strands, to ensure consis-
tency in the other two vectors, we orient the tangent vector
in a way that aligns with the u direction of the UV texture
coordinates map. The bitangent vector is then defined as
a cross-product between the normal and the tangent. The
origin of this new coordinate system is the strand’s root, so
after alignment, each strand originates from 0.

We increase the diversity of hair strands following [29]
and augment their aligned versions using flipping, stretch-
ing and squeezing, and rotations around the normal. On
top of that, we also add realistic curliness augmentations
and cutting into the mix. We apply the same augmentations
besides rotations and flipping to the entire hairstyle for the
diffusion-based prior training.

H3DS. We evaluate our approach using a public subset
of a multi-view H3DS dataset [27]. Each of its scenes has

∗ Work done at Samsung AI Center

32 views evenly spaced around the subject. However, since
the subject is being moved during the capture because of
the non-uniform coverage of the camera setup, their ex-
trinsic parameters are not accurately estimated for some of
the scenes. This results in poor performance across all re-
construction methods, and we remove such scenes from the
evaluation. We also process these images using human mat-
ting [14] and semantic segmentation [21] networks to obtain
hair and bust masks. Lastly, we calculate orientation maps
using a set of 180 Gabor filters Gb with variances σx = 1.8
and σy = 2.4, frequency ω = 0.23, a zero phase offset ψ,
and a rotation angle b, measured in radians. We then obtain
an orientation angle a for each pixel: a = argmaxb |Gb|,
and additionally calculate its variance as

Var[a] =
∑

b∈[0,π)

∣∣Gb

∣∣∑
o

∣∣Go

∣∣ ·min{|a−b|2, |a−b±π|2}. (1)

Monocular videos. We conduct an additional evaluation
of our method by training on monocular videos. For this
setup, we place subjects in a chair and ask them to remain
stationary during the capture session, which lasts around
one minute and is produced using a Samsung Note20 Ul-
tra smartphone. Then, we subsample 60 frames from the
video, ensuring that they are equally spaced around the sub-
ject and have no motion blur. For that, we use image quality
assessment networks [34]. We then perform structure-from-
motion using COLMAP [30, 31] to obtain initial values for
camera intrinsic and extrinsic parameters. Lastly, we ob-
tain segmentation masks and orientation maps for the train-
ing frames following the procedure described previously.
We find that additional camera fitting procedure described
in [19] launched for first 10,000 iterations during the first
stage could improve the quality of reconstructions.

Cem Yuksel’s Hair Models. For the quantitative evalu-
ation, we chose two medium-length hairstyles: curly and
straight, from a popular synthetic dataset [40]. We used
a separate dataset from USC-HairSalon for evaluation to

avoid bias in the calculated metrics. By using Blender [6],
we generate 70 views with a resolution of 2048 × 2048 for
each scene for training, which includes both RGB and seg-
mentation masks. We then calculate the orientation maps
using the same procedure based on Gabor filters.

1.2. Hair prior training

Each hair strand in the synthetic dataset is represented as
a set of L points: S = {pl}Ll=1, while each hairstyle sample
consists of M strands: {Si}Mi=1. The number of points per
each strand is L = 100 across the whole dataset, while the
number of strands M varies from sample to sample.

Hair strand parametric model. As stated previously, we
map the individual hair strands into a TBN basis and aug-
ment them. Then, we encode the aligned 3D points using
an encoder E , a one-dimensional ResNet-50 [11], into the
mean zµ ∈ R64 and sigma zσ ∈ R64. We then perform a
reparameterization trick z = zµ + zσ · ϵ and decode the re-
sulting latent vector into a strand via a decoder G. Instead of
predicting individual points, we follow [5] and predict off-
sets dl

i = pl+1
i − pl

i. We use a modulated SIREN [23] net-
work consisting of two MLPs with 8 layers and 256 chan-
nels for the decoder architecture following [29]. We use
this module to individually decode each offset on the strand
given its index l and the latent vector z as inputs. The index
l is normalized and used in the periodic activation functions.
The resulting points on the strands are obtained by accumu-
lating the offsets:

pl
i =

l−1∑
j=1

dj
i , l = 2 . . . L, (2)

and p1
i = 0 due to alignment. The training of E and D

proceeds using the training objective described in the main
paper. For optimization we use Adam [15] with cosine an-
nealing of learning rate from 10−4 to 10−5 and weights
λd = 0.05, λc = 1, λKL = 10−4. After training, the
weights of these networks remain frozen, and zµ is used
as z.

Hairstyle diffusion model. We prepare a training sample
for the diffusion model by first mapping a hairstyle {Si}Mi=1

with random strand origins p1
i into a hairstyle whose origins

span a uniform grid on the FLAME scalp texture map. For
that, we use nearest neighbors interpolation. We use the tex-
ture with resolution 256× 256 for both the hairstyle prior
training and fine-tuning. After that, we apply the common
augmentations for the entire hairstyle which were described
in the previous section in the basis calculated as an average
over the basis of its strands components and map them into a
latent texture T = {zij}256,256i,j=1,1 using E . Lastly, we subsam-
ple this texture into a low-resolution version TLR ∈ R32×32

using the random integer offsets si ∈ [0, 7] and sj ∈ [0, 7].
The low-resolution texture can then be obtained as follows:

TLR = {zij | i = si + 8q,

j = sj + 8r, q, r = 0 . . . 31}.
(3)

Such subsampling allows us to generate exactly 82 = 64
different training samples per hairstyle, boosting the diver-
sity of the dataset and speeding up the training of the prior.

We then follow EDM [13] training pipeline and sample ϵ
from a standard normal distribution and a noise level σ from
a log-normal distribution with the mean −1.2 and sigma
1.2. We obtain a noised texture x as:

x = TLR + σ · ϵ. (4)

Then, for training we use an equivalent simplified version
of Ldiff:

Ldiff = Ey,σ,ϵ

[∥∥∥F(
cin(σ) · x, cnoise(σ)

)
−

1

cout(σ)

(
y − cskip(σ) · x

)∥∥∥2
2

]
.

(5)

For derivations, please refer to [13]. In Figure 1, we
show the samples of a pre-trained diffusion model. These
hairstyles look sparse, as they only contain 322 = 1024
strands.

For diffusion model we use UNet architecture from
EDM [13] and optimize it using AdamW [22] with learning
rate 10−4, β = [0.95, 0.999], ϵ = 10−6, and weight decay
10−3. For scheduling, we use an inverse decay learning rate
schedule with inverse multiplicative factor = 20000, factor
= 1, and warmup = 0.99. All training on synthetic dataset
took 2 days on a single NVIDIA RTX 4090.

After training, the diffusion network F has its weights
frozen.

1.3. Coarse volumetric reconstruction

FLAME fitting. For each scene, we fit a FLAME head
mesh using keypoint-based objectives. We detect the
ground truth keypoints for the face using an OpenPose [3,
4, 32, 37] and Face Alignment [2] detectors and filter out
the frames where the face is not visible. Then, we optimize
w.r.t. the FLAME shape and pose parameters by minimiz-
ing the difference between the projected head mesh key-
points and the detected ones. First, we optimize global rota-
tion, translation, and scale parameters and then additionally
fit shape starting from PIXIE [8] initialization and turning
on the shape regularization. We use a pipeline similar to
DECA [9] for visible keypoints projection and L-BFGS
[20] optimizer with a learning rate set to 0.5.

Volumetric reconstruction. To calculate αhair
i and αbust

i ,
we follow the approach described in NeuS [36] and con-
vert the SDF values fhair(xi) and fbust(xi) into opacities for

Figure 1: Random hairstyles produced by a pre-trained diffusion model. Each sample consists of 1024 individual strands

a given ray vi. To obtain a set of points {xi}Ni=1 used in
ray marching, we apply the iterative importance sampling
algorithm from [24] using blended opacities α.

We then use the FLAME mesh to provide additional
training signals for the occluded bust regions, which cannot
be correctly reconstructed by simply minimizing the differ-
ence between the rendered and ground truth colors and sil-
houettes. Following prior works for fitting SDFs to mesh-
based geometry [1, 10, 33], we regularize the implicit SDF
to vanish near the surface of the mesh and match its gradi-
ents ∇xfbust(x) to the surface normals n(x) of the closest
point on the FLAME mesh. Additionally, we penalize the
non-zero hair occupancies αhair

i inside the bust mesh.
We calculate this loss by reusing the points xi sampled

during ray marching to make the training process more ef-
ficient. We split these points into two groups: those who lie
inside the volume Ωhead bounded by the mesh, and the ones
that lie outside: Ωout = Ω \Ωhead. We additionally sample a
set of points xhead

i on the surface of the head mesh, denoted
as Ω0, to evaluate surface-based constraints. The final loss
is denoted as Lhead:

Lhead =
∑

xhead
i ∈Ω0

∣∣fbust(x
head
i)

∣∣+
0.1 ·

(
1−∇xhead

i
fbust(x

head
i) · n(xhead

i)
)

+
∑

xi∈Ωout

0.1 · exp
(
− γ ·

∣∣fbust(xi)
∣∣)

+
∑

xi∈Ωhead

∣∣αhair
i

∣∣ ,
(6)

where · denotes a dot product, and γ ≫ 1 is a constant.
To calculate an orientation loss, we follow [25] and use

Plucker line coordinates [38] to project the orientation field
β at point xs along the ray v into the camera P , the pro-
jected 2D direction in the camera coordinates is denoted
as L(xs, β(xs),P). Then, we measure the angle âv be-
tween the predicted direction and the camera y-axis, which
is module π, i.e. in the range [0, π). The direction loss be-
tween this predicted angle and the ground-truth orientation
av with its variance Var[av] in the hair region are measured

as follows:

Ldir =
∑
v

mhair(v)

Var2[av]
min

{
|av − âv|, |av − âv ±π|

}
, (7)

where mhair(v) denotes a hair mask value at the rendered
pixel, corresponding to the ray v, and the sum is across all
rays in the batch.

Network architecture. We use a similar network archi-
tecture as NeuS [36], which consists of three MLPs to en-
code SDF fhair for hair geometry, SDF for head fbust, and
scene color, respectively. The geometry networks have
8 hidden layers with a hidden size of 256, Softplus with
β = 100 as the activation function, and a skip connection
from the input to the fourth hidden layer.

The hair geometry network first transforms the input
points via positional encoding with 8 harmonics and then
passes them through the MLP to predict their SDF, fhair ∈
R, features lhair ∈ R256, and orientations β ∈ R3. The ac-
tivation of the orientation head is the Tanh function. As the
rest of the bust has lower frequency details, the input points
of the head geometry network are positionally encoded with
6 harmonics. Similarly, the network predicts the bust SDF
fbust ∈ R and feature vectors lbust ∈ R256.

We have a joint color network, which is modeled by an
MLP with 4 linear layers with a hidden size of 256. As in-
put it takes the spatial location xi, the view direction v, the
normal vector of SDF, n = ∇f(xi), and a 256-dimensional
feature vector l. To combine the feature vectors and normals
of the hair, lhair,∇fhair(xi), with the bust, lbust,∇fbust(xi),
we first calculate the blending weight wi for each point as
follows:

wi =
αbust
i

αbust
i + αhair

i + ε
, (8)

where αbust
i , αhair

i - are individual opacities of bust and hair
correspondingly and ε = 10−5 is used for numerical sta-
bility. Then we blend the features and the normals accord-
ingly:

l = wi · lbust + (1− wi) · lhair (9)

n = wi · ∇fbust(xi) + (1− wi) · ∇fhair(xi) (10)

We train volumetric reconstruction using Adam [15] op-
timizer with learning rate equal to 5 · 10−4 and weights:
λcolor = 1, λmask = 0.1, λreg = 0.1, λhead = 0.1, λdir = 0.1
for 300,000 iterations.

1.4. Fine strand-based reconstruction

For fine strand-based optimization we use Adam [15]
with learning rate set to 10−3 and MultiStep annealing
with γ = 0.5 and milestones = [4 · 104, 6 · 104, 8 · 104].
Also, we use the following weights of losses: λchm. = 1.,
λorient = 0.01, λprior = 10−3, λrender = 10−3, λmask = 0.01.

Texture parametrization. Our geometry T and appear-
ance texture have resolution 256×256 with number of chan-
nels 64 and 16 correspondingly. They are both parameter-
ized using a UNet, similar to deep image prior [35]. We
share network parameters between these textures and pre-
dict them from a constant grid of UV coordinates. We pre-
process them using a positional encoding [24] before feed-
ing into the network, which consists of 6 sine and cosine
functions.

Visible surface extraction. We obtain the visible hair
surface S from a hair SDF fhair and a bust SDF fbust to use
it in orientation Lorient and chamfer Lchm. losses. To obtain
it, we first extract zero-level iso-surfaces from both implicit
functions using Marching Cubes [17]. Then, we render both
hair and bust meshes using a set of cameras from the chosen
dataset. Due to limited top views in H3DS [27] we addi-
tionally consider top cameras to prevent the appearance of
big holes in hair SDF geometry. Finally, we select all the
hair faces that are visible from at least one view and use the
resulting mesh as S in all losses.

Soft rendering. For differentiable soft rasterization, we
use Pytorch3D [28] framework. Our full soft rasterization
pipeline consists of three steps. First, we generate quad ge-
ometry for each strand in a hairstyle and orient these polyg-
onal quads so that most of the produced faces are aligned
with the camera plane, see Fig. 2. It requires calculating
Frenet–Serret frame [7] for each point of a strand and then
generating additional vertices while considering only XY
coordinates in camera space:

Sgen. = S± [NXY , 0], (11)

where S – hair strand represented by 3D vertices, NXY –
normal vector to a strand projection onto a camera plane, by
[·, ·] we denote a simple concatenation. Such view-aware

Figure 2: Hair quads produced by the view-aware genera-
tion: geometry is built in a way that most of the quads are
facing the camera plane.

generation prevents quads from being oriented orthogonal
to the view plane, which effectively increases the number
of samples as if they were oriented randomly.

Secondly, we rasterize obtained quads for hair within
head to obtain z-buffer with the nearest faces to each pixel.
Finally, we blend it using sigmoid probability map. For ras-
terization we use blur radius = 10−4, faces per pixel = 16
and image size = 512 due to memory restrictions and for
blending: σ = 10−5 and γ = 10−5.

The input of our rendering UNet network consists of
soft rasterized appearance descriptors ∈ R16 concatenated
with hard rasterized orientations â transformed to R3 using
sine and cosine functions. For the cosine, we additionally
split it into two channels, corresponding to the positive and
negative components, and take their absolute value. This
way, we ensure that all channels are normalized in [0, 1].
While the rasterized appearance features are the same for
the whole strand, orientations are different for each point.
They contribute to the ability of neural rendering to model
the view-dependent changes in hair color since the projected
orientations contain information about both hair strand local
growth direction and camera view direction. For rendering
UNet, we use architecture similar to [26].

2. Additional Ablations and Results
Evaluation protocol. For metrics evaluation, we sam-
ple 50,000 strands, the same number as in ground-truth
hairstyle. Furthermore, we linearly interpolate the number
of points on each strand in ground-truth hairstyle to 100 to
prevent biased metrics.

Real-world evaluation. We show an extended compari-
son of our approach with reconstruction methods for differ-
ent viewing angles (see Figure 5) on H3DS [27]. Further-
more, we visualize the reconstructions for additional scenes
in Figure 6. Our approach can handle both long and short
hairstyles, proving its versatility in achieving realistic re-

Straight hair Curly hair
Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40

Precision Recall F-score Precision Recall F-score
Lgeom 63.8 88.6 94.9 9.9 16.2 21.2 17.1 27.4 34.7 50.8 75.1 85.9 5.7 11.3 18.4 10.2 19.6 30.3
w/o Lchm 82.9 95.0 97.1 4.5 8.9 14.2 8.5 16.3 24.8 51.0 73.8 84.6 3.9 8.4 14.3 7.2 15.1 24.5
w/o Lvol 48.3 71.8 79.4 10.1 21.7 32.2 16.7 33.3 45.8 20.1 35.3 45.5 5.7 12.4 21.2 8.9 18.4 28.9
w/o Lorient 31.7 56.2 69.0 6.0 12.1 17.8 10.1 19.9 28.3 21.5 43.7 59.8 4.7 10.3 17.7 7.7 16.7 27.3
w/ Lrender [29] 68.4 89.4 95 9.8 15.7 23.6 17.1 26.7 37.8 48.7 75.3 87.0 6.2 12.0 19.3 11.0 20.7 31.6
w/ Lrgb 71.6 90.4 95.2 9.1 15.6 22.5 16.1 26.6 36.4 49.3 76.0 87.7 6.1 12.0 19.4 10.9 20.7 31.8
w/ Lmask 63.5 88.2 94.6 11.1 17.3 22.5 18.9 28.9 36.4 49.4 74.7 86.1 6.3 12.1 19.5 11.2 12.1 31.8
Lfine w/o Lrgb 59.8 84.1 92.2 12.9 22.8 31.3 21.2 35.9 46.7 45.1 71.1 83.6 6.3 12.4 20.3 11.1 21.1 32.7
Lfine 59.9 84.1 92.1 13.1 22.7 31.5 21.5 35.8 46.9 45.8 72.1 84.6 6.4 12.8 21.0 11.2 21.7 33.6
Neural Strands∗ [29] 74.0 81.8 85.3 12.8 20.5 28.8 21.8 32.8 43.1 38.4 59.8 72.4 7.9 15.1 23.8 13.1 24.1 35.8

Table 1: We provide an extended quantitative evaluation of individual components of our method with per-scene metrics. Our
full method with Lfine outperforms others in terms of Recall and F-score for both scenes. For a detailed discussion, please
refer to Section 2.

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision Recall F-score

final model 45.8 72.1 84.6 6.4 12.8 21.0 11.2 21.7 33.6
32 faces per pixel 42.8 67.8 81.4 5.8 11.7 19.5 10.2 20.0 31.5
1 face per pixel 42.4 69.5 83.7 5.9 12.2 20.7 10.4 20.8 33.2
batch size 4 38.8 66.6 81.9 6.2 12.6 20.8 10.7 21.2 33.2
batch size 8 43.7 67.9 81.4 6.3 12.8 21.1 11.0 21.5 33.5

Table 2: We provide an extended quantitative evaluation of
hyperparameters of our method. Our final model outper-
forms others, showing that its set of hyperparameters is op-
timal.

Figure 3: Comparison of our multi-view method (right)
with a single-shot NeuralHDHair [39] system (middle).
Digital zoom-in is recommended.

constructions in different scenarios. Finally, we provide re-
sults of our system obtained on the same twelve views as
used in DeepMVSHair [16] (see Figure 11).

We also provide an extended comparison with the one-
shot reconstruction method NeuralHDHair[39], see Fig-
ure 3. The main advantage of our method is the higher
fidelity of hair reconstructions, which are obtained jointly
with the personalized bust models.

Lastly, we include additional monocular video recon-
struction examples. In total, we present the results for five

scenes with various hairstyles: long, short, and curly, see
Figure 7, 8 and 9.

Ablation on losses. We provide an extended ablation
study in Table 1 and Figure 4. It contains separate results
for curly and straight synthetic hair, which extend quanti-
tative metrics presented in the main paper. We additionally
include an ablation study for the individual components of
the geometry loss Lgeom in the upper section and the impor-
tance of Lrgb in the bottom. Our full method, Lfine, achieves
the best performance in terms of both Recall and aggregated
F-score for both scenes. All terms in Lgeom clearly con-
tribute to the overall performance. Without Lchm the gener-
ated hairstyle does not cover the whole hair volume. Since
we use only a one-way chamfer, not two-way, to attract
strands to the outer surface, discarding Lvol leads to unreal-
istic strands outside the hair region (see Figure 4). Without
Lorient we obtain the same hairstyle coverage, but strands
have random orientations on the surface which significantly
decreases the realism. Furthermore, from Table 1 you could
see the decrease in performance for both scenes without us-
ing Lrgb. We also present the comparison results with Neu-
ral Strands∗ re-implementation in Table 1 (last row). Our
method outperforms Neural Strands [29] both quantitatively
(across most metrics) and qualitatively as was shown in the
main paper.

Hyperparameters study. We conduct an ablation study
on important hyperparameters used in the soft rendering
part in order to make sure that the chosen ones are opti-
mal. Results on curly synthetic hair scene are provided in
Table 2. We varied different number of faces per pixel and
images used at each iteration in soft rasterization. In our fi-
nal model by default, we use faces per pixel = 16 and batch
size = 1. From the table, we could see that neither increase
nor decrease of these hyperparameters helps to improve re-
sults compared to our final model. The quality of renders is
also the same.

Lgeom w/o Lchm

w/o Lorient w/o Lvol

Figure 4: Ablation on individual components of geometry
loss Lgeom. Without chamfer loss Lchm strands doesn’t cover
the whole hair silhouette. Removing orientation loss Lorient
leads to random directions while removing the volume loss
Lvol results in uncontrolled strands growing outside the hair
region.

Image UNISURF NeuS DeepMVSHair Ours

Figure 5: Extended qualitative comparison using real-world multi-view scenes [27]. Digital zoom-in is recommended.

Image Ours Image Ours

Figure 6: Additional results for our method on a multi-view dataset [27]. Our method is capable of reconstructing various
length hairstyles, starting from long (top row) to short (bottom row). Digital zoom-in is recommended.

Figure 7: Additional reconstruction results of our method on monocular videos in arbitrary lighting conditions. Our method
is capable of obtaining personalized reconstructions for various hairstyles.

Figure 8: Additional reconstruction results of our method on monocular videos in arbitrary lighting conditions. Our method
could produce realistic hair geometry for long and short, straight and curly hairstyles.

Figure 9: Additional reconstruction results of our method on monocular videos in arbitrary lighting conditions.

Figure 10: The main limitation of our method is related to curly hair reconstruction, which will be addressed in future work.

Image DeepMVSHair Ours (12 views)

Figure 11: Qualitative comparison using 12 views from real-world multi-view scenes [27]. Digital zoom-in is recommended.

References
[1] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-

ing of shapes from raw data. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2562–2571, 2019. 3

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem? (and a
dataset of 230,000 3d facial landmarks). In International
Conference on Computer Vision, 2017. 2

[3] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 2

[4] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In CVPR, 2017. 2

[5] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and
David Duvenaud. Neural ordinary differential equations,
2018. 2

[6] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2023. 1, 2

[7] Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Pe-
ter Schröder. Digital geometry processing with discrete ex-
terior calculus. In International Conference on Computer
Graphics and Interactive Techniques, 2013. 4

[8] Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios
Tzionas, and Michael Black. Collaborative regression of ex-
pressive bodies using moderation. In International Confer-
ence on 3D Vision (3DV), pages 792–804, Dec. 2021. 2

[9] Yao Feng, Haiwen Feng, Michael J. Black, and Timo
Bolkart. Learning an animatable detailed 3D face model
from in-the-wild images. volume 40, 2021. 2

[10] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning,
2020. 3

[11] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015. 2

[12] Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. Single-
view hair modeling using a hairstyle database. ACM Trans-
actions on Graphics (TOG), 34:1 – 9, 2015. 1

[13] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022. 2

[14] Zhanghan Ke, Jiayu Sun, Kaican Li, Qiong Yan, and Ryn-
son W.H. Lau. Modnet: Real-time trimap-free portrait mat-
ting via objective decomposition. In AAAI, 2022. 1

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 2, 4

[16] Zhiyi Kuang, Yiyang Chen, Hongbo Fu, Kun Zhou, and
Youyi Zheng. Deepmvshair: Deep hair modeling from
sparse views. SIGGRAPH Asia 2022 Conference Papers,

2022. 5
[17] Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and

Geovan Tavares. Efficient implementation of marching
cubes’ cases with topological guarantees. Journal of Graph-
ics Tools, 8:1 – 15, 2003. 4

[18] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and ex-
pression from 4D scans. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017. 1

[19] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields. In
IEEE International Conference on Computer Vision (ICCV),
2021. 1

[20] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical Program-
ming, 45:503–528, 1989. 2

[21] Kunliang Liu, Ouk Choi, Jianming Wang, and Wonjun
Hwang. Cdgnet: Class distribution guided network for hu-
man parsing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4473–4482, June 2022. 1

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2017. 2

[23] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shecht-
man, Ravi Ramamoorthi, and Manmohan Chandraker. Mod-
ulated periodic activations for generalizable local functional
representations. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 14194–14203, 2021. 2

[24] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, 2020.
3, 4

[25] Giljoo Nam, Chenglei Wu, Min H. Kim, and Yaser Sheikh.
Strand-accurate multi-view hair capture. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 155–164, 2019. 3

[26] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lem-
pitsky, and Evgeny Burnaev. Npbg++: Accelerating neu-
ral point-based graphics. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15969–15979, June 2022. 4

[27] Eduard Ramon, Gil Triginer, Janna Escur, Albert Pumarola,
Jaime Garcia Giraldez, Xavier Giró i Nieto, and Francesc
Moreno-Noguer. H3d-net: Few-shot high-fidelity 3d head
reconstruction. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5600–5609, 2021. 1, 4,
7, 8, 12

[28] Nikhila Ravi, Jeremy Reizenstein, David Novotný, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. SIGGRAPH
Asia 2020 Courses, 2019. 4

[29] Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chen-
glei Wu, Sven Behnke, and Giljoo Nam. Neural strands:
Learning hair geometry and appearance from multi-view im-
ages. European Conference on Computer Vision (ECCV),
2022. 1, 2, 5

[30] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1

[31] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1

[32] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In CVPR, 2017. 2

[33] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation func-
tions. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020. 3

[34] Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge,
Jinqiu Sun, and Yanning Zhang. Blindly assess image qual-
ity in the wild guided by a self-adaptive hyper network.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3664–3673, 2020. 1

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Deep image prior. Int. J. Comput. Vis., 128(7):1867–1888,
2020. 4

[36] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 2, 3

[37] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines. In CVPR, 2016. 2

[38] Bernhard P. Wrobel. Multiple view geometry in computer
vision. Künstliche Intell., 15:41, 2001. 3

[39] Keyu Wu, Yifan Ye, Lingchen Yang, Hongbo Fu, Kun Zhou,
and Youyi Zheng. Neuralhdhair: Automatic high-fidelity
hair modeling from a single image using implicit neural
representations. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1516–1525,
2022. 5

[40] Cem Yuksel, Scott Schaefer, and John Keyser. Hair meshes.
ACM SIGGRAPH Asia 2009 papers, 2009. 1

