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1. Additional Comparisons of Difference Maps

Fig. 1 shows additional comparisons of difference maps
and PSNR scores of the truncation trick and our method on
Cat and MetFace datasets. Our method is less destructive
and better retains useful features in the generation.
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Figure 1. Comparison of difference maps of truncation trick and
our method over (a) AFHQ-Cat [1] and (b) MetFace [2] datasets.
The numbers at the bottom right corner of the difference images
are PSNR scores.
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2. Choice of Hyper-parameters (Cont.)

In addition to Fig. 8 in Sec. 5.4 of the main paper, we
provide additional qualitative justification for our choice of
p = 2,t = 2 with FFHQ [3], MetFace [2] and AFHQ-
Cat [1] datasets. As Fig. 2 shows, our choice of hyper-
parameters is valid across different datasets.

3. Additional Results for Applications in Inter-
polation and Editing

Fig. 3 shows additional results for the application of our
method in StyleGAN image interpolation. Our method can
still remove image artifacts while retaining smooth Style-
GAN interpolations. Fig. 4 shows similar observations for
StyleGAN image editing. These results demonstrate that
our method retains StyleGAN latent semantics and is com-
patible with various StyleGAN latent space applications.

4. Additional Statistics of Dominant Features

In addition to the statistics of dominant features in Fig. 4
of the main paper (i.e., the n in red), we include more fine-
grained results in Fig. 5, showing more details on how the
ratio of dominant features increase across layers.

5. Results on Non-Face Data

Fig. 6 shows that our method works well on the Bench
Dataset! without “face” structures.
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Figure 2. Choice of hyper-parameters (Cont.). (a) FFHQ [3]; (b) MetFace [2]; and (c) AFHQ-Cat [ 1] datasets. For each subfigure, Top
row: images generated with truncation trick with ¢» = 0.55 to 0.95; Rows 2-4: images generated with our method with ¢ = 0.0 to 4.0,
p = 1 to 3. Our method removes the artifacts while retaining almost all important features of the original image, indicating that it achieves
a better trade-off between image quality and diversity than the truncation trick.



StyleGAN2

Feature Rescaling

Ours

Figure 3. Our method is compatible with StyleGAN interpolations. StyleGAN?2: interpolation between defective images synthesized by
StyleGANZ2; Ours: images “corrected” by our feature rescaling method.
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Figure 4. Our method is compatible with StyleGAN image editing [4], e.g., gender, and smile. StyleGAN2: interpolation between defective
images synthesized by StyleGAN2; Ours: images “corrected” by our feature rescaling method.
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Figure 5. The ratio of dominant features 7 increases in different

layers (from left to right) in a representative StyleGAN2 synthe-
sized image affected by “cancer”.
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