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A. Limitation and Future Work

Our current experiments only validate our approach in
fine-tuning StyleGANs. Despite the easy usage, the image
fidelity and disentanglement performance might be better if
we could train StyleGANs equipped with our Householder
Projector from scratch. However, due to the limited com-
putational resources, this point cannot be validated for now.
Additionally, in the current setting, we pre-define the num-
ber of semantics of each layer to a fixed number (the rank of
the projector). Seeking an adaptive scheme to automatically
mine the semantics would be also an important direction of
our future work.

B. Mathematical Derivation

B.1. Decomposing U and V

For n×n orthogonal matrix U, there exists
H1H2 . . .Hn=U where Hi is a Householder reflec-
tion matrix. The decomposition is achieved by the
n-reflections theorem: each Hi can be designed to zero
out the non-diagonal entries of U in the i-th column and
row and to set the diagonal entry to 1. Such accumulation
of n reflectors can transform U into an identity matrix
(UHn . . .H2H1=I). Since Hi is a reflection (HiHi=I),
this theorem directly gives the relation U=H1H2 . . .Hn.

B.2. Orthogonality Preservation

The orthogonality of a Householder matrix Hi can be
easily verified by:
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Similarly, when a gradient descent step is performed (i.e.,
(hi−η▽hi), we still have the relation:
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The orthogonality is preserved during the back-propagation
and weight update phase.

B.3. Householder Representation

With the previous results on orthogonality preservation
of a Householder matrix, we can proceed to show how an
orthogonal matrix can be represented by the accumulation
of elementary Householder reflectors. Given a square or-
thogonal eigenvector matrix defined as:
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where ui denotes the eigenvector of U, and λi ⊂ {−1, 1}
is the eigenvalue. Let

∏d
j=1 Hj be the accumulation of

Householder reflectors as:
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If we set hj = ui for i = j, the orthogonality would natu-
rally lead to
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Eq. (5) is further simplified as:

d∏
j=1

Hjui = λiui = Uui (7)

The above equation shows that the relation U =
∏d

j=1 Hj

holds. This indicates that any orthogonal matrices can be
represented by a series of Householder accumulations.

B.4. Semi-orthogonality of Non-Square Matrices

For the fluency of text flow, we do not differentiate the
projector A from square or non-square matrices in the pa-
per. Strictly speaking, non-square matrices with orthonomal
rows or columns (depending on whether A is a flat matrix
or tall matrix) should be called semi-orthogonal matrices
more precisely. Here we give a special note for the strict-
ness of math definitions, but this does not influence the core
contribution of our method or any experimental results.

C. Details of Datasets and Metrics
C.1. Datasets

StyleGAN2 Datasets. FFHQ [11] consists of 70, 000 high-
quality face images that have considerable variations in
identifies and have good coverage in common accessories.
LSUN Church [16] has 126, 227 scenes images of outdoor
churches, and LSUN Cat [16] is comprised of 1, 657, 266
different cat images collected online.
StyleGAN3 Datasets. MetFaces [7] contains 1, 336
high-quality human faces extracted from works of arts.
AFHQv2 [1] is a dataset consisting of 15, 803 animal
faces from three different domains, including cat, dog, and

wildlife. SHHQv1 [3] covers 40, 000 images of diverse full-
body clothed humans in its current version. Notice that
their pre-trained models use 230, 000 images for training
but only a subset of the training set is released. We expect
that using the complete set for training would further im-
prove the FID score of our method on SHHQ.

C.2. Metrics

Fréchet Inception Distance (FID) [5]. FID assesses the
Fréchet distance of deep features between the set of gener-
ated images and the set of real images. More formally, given
the feature distribution N (µ,Σ) of real images and the fea-
ture distribution N (µ′,Σ′) of fake images, the distance is
computed as:
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A small value would indicate that the distance between dis-
tributions is close and the generated images are realistic.
Our FID score is computed based on 50, 000 samples.
Perceptual Path Length (PPL) [9] and Perceptual Inter-
pretable Path Length (PIPL). PPL subdivides the interpo-
lation path into linear segments and measures the perceptual
image distance of the segmented path. Let w1 and w2 be
the randomly sampled latent code in the W space of Style-
GANs. Then PPL defined in the W space is calculated as:

PPLW = E
[ 1

ϵ2
d(G(lerp(w1,w2, t),

G(lerp(w1,w2, t+ ϵ)))
] (9)

where d(·) represents the LPIPS [17] distance, lerp(·) de-
notes the spherical interpolation function, t is a random
variable sampled from U(0, 1), and ϵ is the subdivision con-
stant, respectively. The division coefficient ϵ is set to 1e−4
for all the experiments.

The metric PPL suits use cases where the latent code is
randomly interpolated. However, when the latent code is
moved around as z + n where n ∈ Rd is an interpretable
direction sampled from a given vector set (i.e., the eigenvec-
tors extracted by SeFa [14]), the PPL score can not reflect
the smoothness of latent space. To make the score adapt
to such vector-based manipulations, we propose our PIPL
metric by naturally incorporating orthogonal vector pertur-
bations into PPL. Formally, the PIPL is defined as:

PIPLW = E
[ 1

ϵ2
d(G(lerp(w1,w2, t),

G(lerp(w1,w2, t) + ϵn))
] (10)

where n is an orthogonal vector (i.e., nTn = 1) sampled
from the given vector set. Here different vector sets are



Steps FID (↓) PPL (↓) PIPL (↓)

0% 18.97 799.38 0.101
0.25% 10.56 427.90 0.057
0.5% 9.31 474.12 0.060
1% 8.46 526.26 0.057
2% 8.10 544.31 0.056

Original StyleGAN2 8.37 722.24 0.141

Table 1. Impact of different fine-tuning steps (% of the original
training steps) on LSUN Cat [16] with StyleGAN2 [10].

used because each model is fine-tuned and the interpretable
directions are changed. It is thus more reasonable to use
the corresponding directions of each method for evaluation.
Since the impact of orthogonal vector perturbation is very
small in the perceptual distance change, we set ϵ as 1 for
StyleGAN2 and as 1e−2 for StyleGAN3 to avoid the mag-
nification by 1/ϵ2. We use different ϵ for StyleGAN2 and
StyleGAN3 because these two models have different lev-
els of sensitivities to the latent perturbation. StyleGAN3
is less sensitive due to the intrinsic equivariance properties
and also the fact that we insert fewer layers. Compared with
PPL, our proposed PIPL can better assess the vector-based
latent disentanglement approaches. Both PPL and PIPL are
computed with 10, 000 samples.
Face Attribute Correlation. For the attribute correlation,
we first use S3FD [18] to extract the face region and then
compute the normalized Pearson’s correlation between the
traversal steps and the predictions using several pre-trained
attributes estimators, including FairFace [6] for face at-
tributes (age, race, glasses, and gender) and HopeNet [2] for
face poses. Among the pool of interpretable directions, the
direction with the highest correlation is deemed to control
the attribute. The results are averaged based on 2K same
samples generated by PTI [13].

D. Ablation Studies

This section presents the ablations on studying the im-
pact of fine-tuning steps, batch size, initialization schemes,
low-rank orthogonality, and acceleration techniques.

D.1. Impact of Fine-tuning Steps.

Table 1 evaluates the impact of fine-tuning steps on the
performance. When the number of fine-tuning steps in-
creases, the FID score and the image fidelity improve. How-
ever, the PPL smoothness deteriorates as FID improves.
This can be considered as a trade-off between image quality
and latent smoothness. We choose 1% fine-tuning steps to
avoid incurring large computational burdens. Nonetheless,
one can always choose an appropriate step if a better FID
score is required.

BS
Metrics FID (↓) PPL (↓) PIPL (↓)

8 5.78 468.99 0.029
16 4.94 473.19 0.031
32 3.72 457.52 0.030

Table 2. Impact of Batch Size (BS) on the quality of generated
images on LSUN Church [16] with StyleGAN2 [10].

Initialization Scheme FID (↓) PPL (↓) PIPL (↓)

Random Initialization 4.89 978.79 0.160
Nearest-orthogonal Mapping 4.40 966.23 0.141

Table 3. Impact of initialization schemes on FFHQ [11].

Computation
Method

Vanilla
Accumulation

Accelerated
Accumulation

Time (ms) 68.02 2.67
Table 4. Computation time cost for Householder accumulation of
representing 512×512 matrices measured on a RTX A6000 GPU.

D.2. Impact of Batch Size

Table 2 presents the image fidelity and the latent space
smoothness when different batch sizes are used for fine-
tuning. When the batch size increases, the FID score has
also steady improvements, while the latent space smooth-
ness is mildly influenced. This indicates that the batch size
can greatly affect image quality. We believe that using a
larger batch size can further boost the FID score of our
method, particularly in StyleGAN3 experiments where our
batch size is actually smaller than the original setting due to
computational resources.

D.3. Impact of Initialization and Acceleration.

Table 3 compares the performance of different initial-
ization schemes. The proposed nearest-orthogonal initial-
ization maps the pre-trained projector into the nearest or-
thogonal form, which leverages the statistic of well-trained
network weights. It thus outperforms the ordinary ran-
dom initialization. Table 4 shows the computational time
of our accelerated Householder aggregation. The accelera-
tion technique significantly improves 25 times the speed of
vanilla accumulation, enabling efficient implementation of
our Householder Projector in deep neural networks. The
marginal time cost would not bring much computational
overhead to generative models.

D.4. Impact of Low-rank Orthogonality

Table 5 presents the quantitative evaluation results on
the impact of projector rank. The FID score of the full-
rank projector falls behind that of the low-rank projector.
This stems from the fact the full-rank projector might be
slower to converge and harder to optimize within the very
limited fine-tuning steps. In terms of latent smoothness, the



Rank FID (↓) PPL (↓) PIPL (↓)

512 (full rank) 4.34 390.89 0.025
10 (low rank) 3.72 457.52 0.030
5 (low rank) 3.65 461.76 0.032

Table 5. Impact of different matrix rank for our Householder Pro-
jector on LSUN Church [16] with StyleGAN2.

Figure 1. Exemplary latent traversal results of full-rank House-
holder Projector on LSUN Church [16] with StyleGAN2 [10]. Due
to the large dimensionality, using the full-rank projector would
split data variations among the eigenvectors. The output changes
are thus imperceptible and it is unlike to inspect the concrete se-
mantic attribute of each traversal direction.

full-rank projector seems to outperform the low-rank pro-
jector. However, as shown in Fig. 1, there are not much
variations in the traversal results and it is hard to inspect
the specific semantic attributes of the identified directions.
In this case, the advantage of full-rank projector on PPL
and PIPL might come from less meaningful variations in-
stead of the improved latent smoothness. Setting the matrix
rank to 5 and 10 leads to very competitive performance. We
set the rank to 10 throughout the experiments because we
empirically observed that each layer of StyleGANs has ap-
proximately 10 semantic concepts. Nonetheless, the readers
are encouraged to set different ranks for other datasets and
architectures if more semantics are observed.

E. More Visualizations and Discussions

E.1. Semantic Unambiguity

Fig. 2 displays some examples of semantics unambigu-
ity. The interpretable directions identified by our House-

holder Projector are unambiguous: different samples would
have consistent semantic attribute changes when the latent
code is moved by the discovered directions.

E.2. Semantic Hierarchy

Fig. 3 shows the layer hierarchy of different semantics
on FFHQ [11]. The shallow layers mainly focus on some
geometric changes of the input images. Then the middle
layers proceed to manipulate local details such as mouths
and eyes. Finally, the deep layers target the global style and
appearance of the images. Overall, the semantics hierarchy
meets the same trend of StyleGANs. This indicates that
our Householder Projector does not modify the semantics
hierarchy of pre-trained models but tunes the model to mine
more disentangled semantic concepts.

E.3. Semantic Diversity

Fig. 4 displays some more semantic attributes discov-
ered on the used datasets. Different from the paper, here
we exhibit more style semantics, i.e., the global appearance
changes in the high-level layers of StyleGANs. Specific
to each datatset, the style semantics correspond to differ-
ent global variations that frequently occur in the datasets.
For example, the style variations in MetFaces [7] are mainly
different painting and colorization styles, and the style vari-
ations in FFHQ [11] mainly concern global color contrast,
image sharpness, and different color temperatures.

E.4. Visual Comparison on Other Datasets

Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 present the exem-
plary attribute comparison across all used datasets. The re-
sults are consistent with the visualizations in the paper. Our
Householder Projector is able to identify more disentangled
semantic attributes and gives users more precise control of
the image attributes in the generation process.

E.5. Comparison with EigenGAN

EigenGAN [4] is a small-scale GAN architecture that
progressively injects orthogonal subspace into each layer
of the generator to achieve disentanglement. Similar with
HP [12] and OrJaR [15], the soft orthogonality regulariza-
tion is also used in EigenGAN to preserve the approximate
orthogonality. Fig. 10 compares some semantics learned by
our method and EigenGAN [4] on FFHQ [11]. Our method
can discover more precise image attributes.

E.6. Generated Samples

Fig. 11 displays some samples randomly generated by
our method across datasets. The image quality of the orig-
inal StyleGANs [10, 8] is maintained by our Householder
Projector.



Color Unambiguity (3rd Layer 3rd Direction) Nose Unambiguity (1st Layer 7th Direction)

Figure 2. Illustration of semantic unambiguity on MetFaces [7] and AFHQ [1] based on StyleGAN3 [8] equipped with our Householder
Projector. The discovered interpretable directions are semantically consistent among different samples.

1st & 2nd Layer
Pose + Hair + Shape 

3rd & 4th Layer
Mouth + Expression + Gender + Age + Eye 

5th - 8th Layer
Global Appearances 

Figure 3. The layer hierarchy of semantic attributes identified by our Householder Projector based on FFHQ [11] with StyleGAN2 [10].
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Different Painting StylesColorization Styles Mouth Color Different Styles 

Figure 4. Gallery of more semantic attributes discovered on the used datasets. Here we display more style-related semantics.
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Figure 6. Exemplary latent traversal comparison of two attributes on LSUN Cat [16].
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Figure 7. Exemplary latent traversal comparison of two attributes on AFHQv2 [1].
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Figure 8. Exemplary latent traversal comparison of three attributes on SHHQ [3].
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Figure 9. Exemplary latent traversal comparison of two attributes on FFHQ [11].

Hair Color

Hair Color + Gaze + Eyebrow Head Pose + HairStyle

Head Pose

Lightning + Head Length

Lightning

Figure 10. Comparison against EigenGAN [4] on some learned attributes with FFHQ [11].



MetFaces (1024x1024)

AFHQv2 (512x512)

LSUN Church (256x256)

SHHQ (512x256)

FFHQ (1024x1024)

LSUN Cat (256x256)

Figure 11. Random samples generated by StyleGANs [10, 8] equipped with our Householder Projector. Our method does not harm the
original quality of generate images.


