Appendices

In this supplementary material, we present additional de-
tails and clarifications that are omitted in the main text due
to space constraints.

* Appendix A: ALFRED Statistics.

* Appendix B: Additional Model Implementation De-
tails.

* Appendix C: Comparison with (SL)? on ALFRED.

* Appendix D: Prompt design choices and prompt selec-
tion under true few-shot setting (cf. Section 4.2 in the
main paper).

* Appendix E: Scaling Comparison with HLSM. (cf.
Section 5 in the main paper).

A. ALFRED Statistics

ALFRED [7] is a large scale dataset containing 7 task
types spanning across 207 unique environments, 115 differ-
ent object types, and 4,703 tasks. It is one of the largest
dataset in terms of number of unique environments, object
types, and task number in the embodied instruction follow-
ing task that involves object interactions and state changes.

B. Additional Model Implementation Details
B.1. HLSM

HLSM [2] consists of three components: a semantic
voxel map, a high-level planner, and a low-level planner.
First, a 3D semantic voxel map is constructed by applying
semantic segmentation and depth estimation to the visual
inputs, which stores the agent’s and the objects’ real-time
locations. Next, the high-level planner takes the language
instructions, the semantic map encoding, and the previous
subgoal history to predict the next subgoal. Lastly, the low-
level planner is a mixture of deterministic algorithms and
learned components (e.g., learning a yaw and pitch angle to
face the object). HLSM first processes the sensory image
input to create/update a map, which is used as an input to
the high-level planner along with the language instructions
to predict the next subgoal. Finally, the low-level planner
maps the subgoal into a sequence of primitive actions.

To adapt HLSM to the few-shot setting, we need to
re-train the components of the model that need paired
trajectory-instruction data for training. For HLSM, paired
data was only used for training the high-level controller.
Therefore, we re-train the high-level controller with the
same 100 training examples we use for LLM-Planner.
Specifically, we use the same set of hyperparameters as

HLSM. While the original HLSM focuses on the goal in-
struction only setting, we found that the step-by-step in-
structions are essential for the few-shot setting, so we con-
catenate goal instruction with step-by-step instructions for
re-training HLSM’s high-level planner. We leave the other
components intact, which are downloaded from the official
codebase.!

B.2. FILM

FILM [4] consists of four components: a semantic map,
a semantic search policy, a template-based high-level plan-
ner, and a low-level planner. At the beginning of each task,
five separate BERT-based classifiers [3] are used to predict
five parameters (task type, target objects, receptacles, par-
ent objects, and whether slicing is needed), each of which
takes the goal and optionally the step-by-step instructions as
input to predict the respective parameter. FILM then gener-
ates the high-level plan by choosing a pre-defined template
based on the predicted task type and filling the other pa-
rameters into the template. In addition, the semantic map
is updated at each time step with the sensory image inputs.
At every 25 steps, the semantic search policy predicts the
coordinates of the target object on the semantic map, which
are then used by a deterministic low-level planner to decide
on a low-level plan to navigate from the current location to
the target object’s location.

Only the BERT-based classifiers need the language-
related data for training. Therefore, to adapt FILM to the
few-shot setting, the five BERT-based classifiers are re-
trained with the same 100 training examples used by the
LLM-Planner. Similar to HLSM, we concatenate the goal
and the step-by-step instructions as input to the BERT-based
classifiers. We use default hyperparameters for BERT mod-
els that are found in the paper. We use the predictions from
these models to generate the high-level plans with the same
pre-defined templates in FILM. We leave other components
intact, which are downloaded from the official codebase.?

B.3. SayCan

SayCan [1] consists of 3 components: an LLM ranker,
set of skills, and a value function. We use the LLM ranker
adapted from SayCan’s codebase * with the same settings
(e.g. temperature and log probability) and use GPT-3 (text-
davinci-003) as the choice of LLM. First, SayCan generates
a list of skills and their affordance score in the current
environment using a pre-trained value function. Then, it
prompts the LLM with natural language description of each
skill and generates a probability that represents how rele-
vant it is to the task success. Finally, SayCan combines the

https://github.com/valtsblukis/hlsm

Zhttps://github.com/soyeonm/FILM

3https://github.com/google-research/
google—-research/tree/master/saycan

. Task Goal Step-by-step . . . Retrieval
Options Introduction Instruction Instructions Plan List Object List Message
Create a high-level
plan for completing
a household task
usIng the allowed Task description: Step -by.-step (Completed, Next) plan: Visible objects
Default actions and [goal instruction] instructions: [subgoals] are [objects] Next plan:
visible objects. g [instructions] g)
Allowed actions are
[action list]
("’PickupObject”) (PickupObject”, ”Apple”)
Punctuation (PickupObject) (PickupObject, Apple)
PickupObject PickupObject, Apple
PickupObject PickupObject
Naturalization Pickup Pickup
Pick up Pick up
Pick up, go to Pickup, Navigate Apple, orange
Delimiter Pick up. Go to. Pickup. Navigate Apple. orange
Pick up \n Go to Pickup \n Navigate Apple \n Orange

Table 1: For each element in our prompt design, we list the default phrasing. For the representation of
actions, objects, and lists, we additionally experiment with different choices of punctuation, naturalization,
and the delimiter between elements in a list. We select the optimal prompt design using LOOCYV on the
100 training examples. The chosen options are highlighted in bold.

skill’s LLM probability and the affordance score to choose
which skill to execute.

To adapt SayCan to ALFRED, we need to define a skill
in the ALFRED environment. From SayCan, a skill is de-
fined as “atomic” behaviors that are capable of low-level
visuomotor control. Each skill can perform a short task,
such as picking up a particular object. This is identical to
our definition of high-level plan in §3, therefore we treat
each skill as analogous to the (high-level action, object) pair.
This formulation allows us to use the same low-level con-
troller we used for LLM-Planner. Furthermore, the value
function is an another important concept for the SayCan.
The value function predicts how likely an individual skill
is to be executable in the current environment. However,
due to the resource constraint we were not able to gener-
ate the data and train a policy for the value function. On
the other hand, we decided to give SayCan an unfair ad-
vantage: we use the ground truth object information to con-
struct an oracle value function. Additionally, instead of it-
erating through a list of all possible (high-level action, object),
we shrink the size of the skill to contain only the object type
available in the current environment. As we described in
§5.3, this gives SayCan an unfair competitive advantage by
giving it the oracle knowledge of all objects and affordances
in the current environment a priori to compiling the list of
skills. Even though SayCan can shrink the skill space with

the extra knowledge, SayCan’s ranking nature calls LLM
significantly more times than a generative model like LLM-
Planner. In fact, LLM-Planner calls GPT-3 avg. 7 times
per task and SayCan calls it 22 times even with the oracle
knowledge of the current environment to shrink the skill list.

C. Comparison with (SL)* on ALFRED

(SL)? [6] is a recent hierarchical planning model that is
also evaluated on the ALFRED benchmark. It randomly
samples 10% of ALFRED’s training data for training. The
high-level planner is based on a pre-trained TS5-small [5]
model, which is fine-tuned to generate high-level plans from
the goal instruction. The low-level planner is another fine-
tuned T5-small model, which is tasked of generating a low-
level plan for each subgoal in the high-level plan. Both
goal and step-by-step instructions are needed for training,
but only goal instructions are needed at inference time.

We could not compare (SL)* under the same few-shot
setting as LLM-Planner because its code was not publicly
available at the time of submission. However, we would
like to highlight that our method achieves comparable per-
formance on the validation set despite using only less than
1/20 of training data than (SL)* (0.5% vs. 10% of AL-
FRED’s training data).

Training Size 50 100 500 1k 10k Full (21k)
LLM-Planner 10.06 1536 16.59 1646 16.83 17.80
HLSM 0.00 0.00 0.37 1.59 9.51 18.28

Table 2: Scaling experiment of LLM-Planner and HLSM
on valid unseen. Metric used is the task success rate.

D. Prompt Design Choices

In-context learning with GPT-3 could be sensitive to the
prompt design. In Table 1, we show different prompt de-
sign choices we have experimented for LLM-Planner. We
structure our prompt into six consecutive parts: task in-
troduction, goal instruction, step-by-step instruction, plan
list, object list, and retrieval message. For each part, we
have a default phrase and a list of additional options to try
on top of the default phrasing signified as []. All the op-
tions listed only modify the phrase that goes in []. First,
we try adding punctuation marks around actions and object.
Next, we naturalize each action name as a plain English
text. Lastly, we experiment with finding the optimal delim-
iter between action list and step-by-step instruction list. We
compared comma, period, and newline inserted between the
sentences. The best prompt was chosen from the LOOCV
accuracy for high-level plans and is bolded.

E. Scaling Comparison with HLSM

We show LLM-Planner’s scaling experiments in compar-
ison with the HLSM [2] in Table 2. We can see that LLM-
Planner significantly outperforms HLSM on almost all data
size except for the full data setting. This result shows that
LLM-Planner is more data-efficient across the board com-
pared to the existing methods. Even with the full data set-
ting, LLM-Planner only falls behind 0.48 SR compared to
the HLSM. Our work can dramatically reduce the amount of
human annotations needed for learning the task while main-
taining a similar performance.

References

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebo-
tar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Ir-
pan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu,
Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao,
Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Ser-
manet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vin-
cent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can and not as i say:
Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022. 1

[2] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and

3

[4

[5

[6

[7

1

—

]

—_

—

Yoav Artzi. A persistent spatial semantic representation for
high-level natural language instruction execution. In Confer-
ence on Robot Learning, pages 706-717. PMLR, 2022. 1, 3
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4171-4186.
Association for Computational Linguistics, 2019. 1

So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar
Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov. FILM:
Following instructions in language with modular methods. In
International Conference on Learning Representations, 2022.
1

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning
Research, 21(140):1-67, 2020. 2

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas.
Skill induction and planning with latent language. In Pro-
ceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
1713-1726, Dublin, Ireland, May 2022. Association for Com-
putational Linguistics. 2

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. ALFRED: A Benchmark for Interpreting
Grounded Instructions for Everyday Tasks. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2020. 1

