Supplementary Material

The hyper-parameter settings are introduced first. Then
we introduce the architectures of projection heads used in
SCFS in Fig. S1. And the Pytorch-style pseudocode and
training time of SCFS are introduced. Finally, we show
more visualization results for the attention maps of SCFS
between local images and corresponding global images in
Fig. S2 and Fig. S3.

A. Hyper-parameters Setting

During the pretraining procedure, we follow the most
hyper-parameters setting of DINO [4]. The SGD optimizer
is used and the learning rate is linearly warmed up to its
base value during the first 10 epochs. The base learning
rate is set according to the linear scaling rule: Ir = 0.1 X
batchsize/256. After the warm-up procedure, the learning
rate is decayed with a cosine schedule [27]. The weight
decay is set to 1e — 4. For the temperatures, 7 is set to 0.1,
and a linear warm-up from 0.04 to 0.07 is set to 7/ during the
first 50 epochs. Following DINO [4], the centering operation
is applied to the output of the momentum encoder to avoid
collapse. For data augmentation, the global augmentations
consist of random cropping (with a scale of 0.14-1), resizing
to 224 x 224, random horizontal flip, gaussian blur, and color
jittering. And the local augmentations consist of random
cropping (with a scale of 0.05-0.14 by default), resizing to
96 x 96, random horizontal flip, gaussian blur, and color
jittering. 2 global views with NV = 8 local views are the
default setting of augmentation.

During the linear probing procedure, we evaluate the
representation quality with a linear classifier. The linear
classifier is trained with the SGD optimizer and a batch size
of 1024 for 100 epochs on ImageNet. Weight decay is not
used. For data augmentation, only random resizes crops and
horizontal flips are applied.

B. Projection Head

There are two kinds of projection heads in SCFS. The
projection head for the contrast between data augmentations
consists of a four-layer MLP with the same architecture as
DINO [4]. As shown in Fig. S1 (a), the hidden layers are
with 2048 dimension and are with gaussian error linear units
(GELU) activations. After the MLP, a L, normalization
and a weight normalized FC layer with K (K = 65536)
dimension are applied.

The projection head for feature search consists of three
convolutional layers and two FC layers. The detailed archi-
tecture is shown in Fig. S1 (b). To make the feature search
loss easy to backward, the residual connection is applied to
the three convolutional layers. After global-averaged pool-
ing, two FC layers are applied to project features to the out-
put dimension. Note that the output dimension is set to 256,

'f 256
T L2 normalization
f K fc (d=256)
4 1 BN,RELU
fc (d=K), fc (d=2048)
weight norm GAP BN,RELU
I L2 normalization 4’% Add
fe (d=256) conv (k=1,c= C")
. f BN
fc (d=2048) conv (k=3,c=256)
T BN,GELU T BN,RELU
fc (d=2048) conv (k=1,c=256)
aar] BN.GELU | L—F BN,RELU
‘F WixH*xC* 'F WixH xC'

(a) (b)
Figure S1. Architecture of the projection heads in SCFS. (a) projec-
tion head for the contrast between data augmentations; (b) projec-
tion head for feature search.

Method \ Batch Size \ Epochs \ Time \ Mem.

DINO [4] 256 200 147h | 52.0G
SCFS 256 200 192h | 68.8G

Table S1. Training Time and Memory Requirements.

which achieves good performance in all the experiments.

C. PyTorch-Style Pseudocode

The Pytorch-style pseudocode of SCFS is shown in algo-
rithm 1. For simplification, we only show one local augmen-
tation and the -th layer for feature search.

D. Training Time and Memory Requirements

We test the training times and memory requirements on a
machine with 8 NVIDIA GeForce RTX 2080Ti GPUs. As
shown in Tab. S1, compared to the baseline DINO [4], the
extra computational time of SCFS increases by 30%. The
memory requirement of SCFS increases 32% compared to
DINO [4]. But this memory requirement increase doesn’t
constrain batch size too much. And SCFS achieves better
performance with a smaller batch size compared to DINO.

E. Results of Other Backbones on ImageNet

We extend the experiments in Tab. 10 to compare with
other methods for different backbones on ImageNet. As
shown in Tab. S2, SCFS achieves the best performance on
ImageNet with the ViT-S and ViT-B backbones.

F. Results on ImageNet-21k

We further pre-train SCFS and DINO [4] on ImageNet-
21k. They are pre-trained with 1024 batch size for 20 epochs
on ImageNet-21k. We evaluate the £-NN top-1 accuracy on

Algorithm 1 PyTorch-style pseudocode of SCFS.

es, et: encoder and momentum encoder networks

hs_i, ht_i: head on the layer-i for feature search of
the encoder and momentum encoder

C, Ci: centers

tps, tpt: temperatures

1, m: network and center momentum rates

et.params = es.params

for I in loader: # load a minibatch I with n samples
I1, I2 = augment(I), augment (I) # global views
I1 = augment(I) # multiple local views

encoder output
sl, _, = es(Il)
s2, _, = es(I2)
sl, S1_i = es(Il)

momentum encoder output
tl, Tl_i = es(Il)
t2, T2_1i = es(I2)

feature search
sl i 1, tl_i = FS(sl_i, T1_i, hs_i, ht_i)
sl _i_2, t2_i = FS(sl_i, T2_i, hs_i, ht_i)

contrastive loss for data augmentation

loss_g = H(tl, s2, C)/2 + H(t2, sl, C)/2
loss_1 = H(tl, sl, C)/2 + H(t2, sl, C)/2
loss_d = loss_g + loss_1

feature search loss
loss_fs = H(tl_i, sl i 1, Ci)/2 + H(t2_i, sl_i_2, Ci
)/2

total loss
loss = loss_d + loss_fs
loss.backward() # back-propagate

encoder, momentum encoder and center updates
update (es) # SGD

et.params = lxet.params + (1-1)x*es.params

C = m*xC + (l-m)xcat([tl, t2]) .mean(dim=0)

Ci = mxCi + (l-m)xcat([tl_1i, t2_1i]) .mean (dim=0)

def H(t, s, C):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean ()
def FS(t, s, hs, ht):
t = t.detach() # stop gradient
s = gap(s, dim=(1,2)) # gap
s = normalize (s, dim=1) # l2-normalize
t = normalize(t, dim=3) # l2-normalize
a = (s*t).sum(dim=3) # similarity
s = axs

[

eturn hs(s), ht(t)

o

ImageNet. As shown in Tab. S3, SCFS also performs better
than DINO [4].

G. Comparing cross-view search with self-view
attention

SCFS mitigates semantic ambiguity to improve con-
trastive learning by building cross-view search tasks, while
some studies strengthen self-view representation by attention
mechanisms such as VITO [30]. In this section, we discuss
the effectiveness of the two approaches. We implemented

Method Backbone BS Epoch k-NN LP
SimCLR [5] | VIT-S-16 4096 300 - 690
BYOL [13] |ViT-S-16 1024 300 66.6 714
SwAV [3] ViT-S-16 1024 300 64.7 71.8
MoCo-v3 [9]| VIT-S-16 4096 300 - 725
DINO [4] ViT-S-16 256 100 69.9 73.8
SCFS ViT-S-16 256 100 70.7 74.7
MoCo-v3 [9]| VIT-B-16 4096 300 - 765
DINO [4] ViT-B-16 256 100 73.6 77.0
SCFS ViT-B-16 256 100 75.8 78.0

Table S2. Results of Other Backbones on ImageNet.

Method k-NN
DINO [4] 48.6
SCFS 50.0

Table S3. Results on ImageNet-21k.

Method k-NN LP
DINO [4] 81.1 87.0
VITO [30] 84.1 88.2
SCFS 84.8 89.2

Table S4. Comparison results of DINO, VITO and SCFS.

VITO [30] based on DINO [4] to achieve a fair comparison.
As shown in the Tab. S4, with the same training settings (
pre-training on ImageNet-100, 256 batch size, 200epochs),
both SCFS and VITO [30] perform better than DINO [4],
which indicates semantic contrast consistency is crucial. In
addition, SCFS achieves 1% performance improvement com-
pared to VITO [30], which indicates that strengthening the
cross-view semantic consistency is more effective for con-
trastive learning.

H. More Visualization Results

We visualize the attention maps of SCFS between lo-
cal images and corresponding global image. As shown in
Fig. S2, SCFS can accurately focus on semantics-consistent
regions between global images and local images. According
to the different semantic concepts inputs, consistent semantic
information can be searched on the global feature.

Furthermore, we also visualize the attention maps be-
tween local images and another images that contains objects
with the same category. As shown in Fig. S3, the attention
maps show that the semantics-consistent regions between
different images are also activated. When the background
images are input, the global images are no longer activated
incorrectly, which achieves the contrastive noise mitigation
and demonstrates the effectiveness of SCFS.

(@

Figure S2. Attention maps of SCFS between local images and corresponding global image. In each example, (a) shows a global image, (b)
shows six local augmentations of the global image, and (c) shows the attention maps that highlight the semantics-consistent regions between
the local images in (b) and the global image in (a), which are obtained by multiplying the globally average pooled feature maps from the
encoder (Res4) of the local images in (b) with the feature map (Res4) of the global image in (a).

Figure S3. Attention maps of SCFS between local images and another image that contains objects with the same category. In each example,
(a) shows an image that contains objects with the same category in (b), (b) shows six local augmentations of a global image, and (c) shows
the attention maps that highlight the semantics-consistent regions between the local images in (b) and the image in (a), which are obtained

by multiplying the globally average pooled feature maps from the encoder (Res4) of the local images in (b) with the feature map (Res4) of
the image in (a).

