
Total-Recon: Deformable Scene Reconstruction for Embodied View Synthesis
SUPPLEMENTARY MATERIAL

The supplement is comprised of the following: addi-
tional details of Total-Recon’s implementation (Section A),
our dataset (Section B), and the baselines (Section C), ad-
ditional metrics and results for the baseline comparisons
(Tables 1 and 2, Figure 5), reconstructions and embod-
ied view synthesis results on additional sequences and ob-
ject removal results (Section D), additional ablation studies
(Section E), and a societal impact statement (Section F).

A. Implementation Details
Data Preprocessing. Before training our composite scene
representation, we follow BANMo [5] by resizing the raw
RGB images and the ground truth depth maps from 960 ×
720 and 256 × 192 resolution, respectively, to a resolution
of 512 × 512, which is the resolution used during training.
We also scale the ground-truth depth measurements and the
translation component of the ARKit camera poses (used to
initialize the background’s root-body poses Gt

0) by a scal-
ing factor of 0.2, which we empirically found to improve
the pre-training of the deformable objects. After training,
we scale the ground-truth and rendered depth back to the
original metric space and compute the evaluation metrics at
480 × 360 resolution.

Optimization. We optimize our composite scene repre-
sentation by first pre-training each object field separately
and then jointly finetuning them. We use the same batch
size, sampled rays per batch, and sampled points per ray as
BANMo [5] for both the pre-training and joint-finetuning
stages. pre-training a deformable object takes 8.5 hours
with 4 NVIDIA RTX A5000 GPUs, and pre-training the
background takes 4.5 hours. Jointly finetuning one de-
formable object and the background takes an additional 1.5
hours with 4 NVIDIA RTX A5000 GPUs, and jointly fine-
tuning two deformable objects and the background takes an
additional 2.5 hours with 4 NVIDIA RTX A6000 GPUs.

Pre-training. For pre-training deformable objects, we
follow the training procedure of and use the same hyper-
parameters as BANMo [5], which we augment with a depth
reconstruction loss weighted by a default value of λdepth = 5
(for the HUMAN 1 sequence, we use a loss weight of
λdepth = 1.5 for pre-training the deformable object). Fol-
lowing BANMo, we pre-train each deformable object in
three training stages, each for 24k, 6k, and 24k iterations.

For pre-training the background model, we optimize
color, flow, and depth reconstruction losses Lrgb, Lflow,
Ldepth on pixels outside the ground-truth object silhouettes,
each with a default weight of λrgb = 0.1, λflow = 1,
λdepth = 1, respectively. We also optimize an eikonal loss
LSDF [6] with a weight of λSDF = 0.001 to encourage the
reconstruction of a valid signed distance function (SDF):
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where xt ∈ R2 denotes the pixel location at time t, X∗
i ∈

R3 is the 3D point in the canonical world space correspond-
ing to Xt

i ∈ R3, the ith sample in the camera space. To
compute this eikonal loss, we sample 17 uniformly spaced
points Xt

i along each camera ray vt from a truncated region
that is 0.2m long and centered at the surface point computed
by backprojecting the ground-truth depth.

We pre-train the background model in two stages: in the
first stage, we optimize the color, flow, depth, and eikonal
losses with their respective default loss weights for 24k it-
erations. In the second stage, we optimize the same set
of losses for another 24k iterations while fixing the back-
ground model’s root-body poses Gt

0, increasing the weight
of the color loss from λrgb = 0.1 to λrgb = 1, and perform-
ing active sampling of pixels xt to improve the background
model’s appearance, as was done in [5].

Joint Finetuning. For the joint-finetuning of all of the ob-
ject models, we optimize the color, flow, depth, and per-
object 3D-cycle consistency losses for another 6k itera-
tions, each with a default weight of λrgb = 1, λflow = 1,
λdepth = 5, and λcyc, j = 1, respectively. Importantly, we
freeze the background’s appearance and shape models by
default and only allow its root-body poses Gt

0, the fore-
grounds’ root-body poses Gt

j , and the foregrounds’ appear-
ance and shape models to be optimized (for the HUMAN
1 sequence, we use a loss weight of λdepth = 1.5, and
for the CAT 1 and CAT 1 (V2) sequences, we allow the
background’s appearance and shape models to be optimized
during joint-finetuning). We also perform active sampling
of pixels xt over all deformable foreground objects. Intu-
itively, the joint-finetuning stage improves the appearance
of the foreground objects and helps the model learn correct
object-to-object interactions.



Figure 1: Stereo Validation Rig Used Only for Evaluation. To
enable quantitative evaluation, we built a stereo rig comprised of
two iPad Pros rigidly attached to a camera mount and captured
11 pairs of RGBD sequences. We train each method only on
the sequences captured from the left camera and evaluate the
images rendered from the viewpoint of the right camera.

B. Dataset Details

In this section, we describe the stereo validation rig we
built for evaluation and elaborate on how the validation rig
is used to evaluate novel-view synthesis.

As shown in Figure 1, our stereo validation rig is com-
prised of two iPad Pro’s rigidly attached to a camera mount.
Importantly, we train each method only on the sequences
captured from the left camera and evaluate the images
rendered from the viewpoint of the right camera i.e., the
“novel-view”. To compute the pose of the “novel-view”
camera, we compute the rigid transform between the left
and right cameras and use this transform to map the opti-
mized training-view cameras of our method to the novel-
view cameras. For each sequence, we register the two cam-
eras by solving a Perspective-n-Point (PnP) problem using
manually annotated 2D-2D correspondences.

The PnP problem aims to estimate the pose of a cali-
brated camera given n 3D-2D correspondences i.e., a set of
n 3D points defined in some world frame and their corre-
sponding 2D image projections. We formulate the problem
of estimating the left-to-right camera transform as a PnP
problem where the left camera of our validation rig cor-
responds to the world frame, and the right camera of our
validation rig corresponds to the calibrated camera.

To obtain 3D-2D correspondences, we first manually
annotate at least 20 2D-2D correspondences for each se-
quence. Next, we obtain the 3D points defined in the frame
of the left camera by backprojecting its ground-truth depth
using the provided intrinsics. Finally, we feed 1) the 3D
points in the left-camera frame, 2) the 2D annotations, and
3) the intrinsics of the right camera to a generic PnP solver
to compute the desired left-to-right camera transform.

Using the stereo validation rig, we captured a dataset
containing 11 pairs of RGBD sequences featuring 3 differ-
ent cats, 1 dog, and 2 human subjects in 4 different indoor
environments. For each sequence, we provide 1) the RGBD
frames (and object masks) captured from both cameras of
our validation rig, 2) their camera pose trajectories, 3) their
camera intrinsics, and 4) the left-to-right camera transform.

C. Details of Baseline Comparisons
Baseline Experiment Details. We provide additional de-
tails of the experiment settings of the baselines. For the
sake of fair comparison, we set up augmented versions of
the baselines D2NeRF [4] and HyperNeRF [2], whereby
we replace their COLMAP [3] camera poses with the iPad
Pro’s camera poses provided by ARKit - the same camera
poses used to initialize the root-body transforms Gt

0 of our
method’s background model. We also compare our method
to depth-supervised variants of HyperNeRF and D2NeRF,
which uses the same losses and hyperparameters as the raw
baselines, with the exception of an additional depth loss
with weight λdepth = 0.1. We empirically observe that us-
ing a higher depth-loss weight significantly deteriorates the
baseline methods’ rendered appearance. As was done for
our method, before training, we scale the ground-truth depth
measurements and the translation component of the ARKit
camera poses by a scaling factor of 0.2; after training, we
scale both the ground-truth and rendered depth back to the
original metric space and compute the evaluation metrics at
480 × 360 resolution.

Additional Qualitative Results. In Figure 5, we show
qualitative comparisons on the remaining 10 sequences of
our RGBD dataset that were not shown in the main pa-
per, namely sequences HUMAN 2 & CAT1, HUMAN 2,
DOG 1 (v1), DOG 1 (v2), CAT 1 (v1), CAT 1 (v2), CAT
2 (v1), CAT 2 (v2), CAT 3, HUMAN 1. Due to space
limits, we only display the visualizations for the depth-
supervised variants of the baselines, but we showcase the
complete set of baselines at https://andrewsonga.
github.io/totalrecon/nvs.html. Total-Recon
outperforms all of the baselines, which can only reconstruct
the rigid background. On the other hand, Total-Recon re-
constructs the entire scene, including all dynamic objects.

Additional Quantitative Metrics. In Tables 1 and 2, we
display the full set of quantitative metrics for our method
and all of the baselines. In addition to the LPIPS and the
average depth accuracy at 0.1m reported in the main pa-
per, we also report the PSNR, SSIM, and RMS depth error.
Our method significantly outperforms all of the baselines in
terms of LPIPS, PSNR, SSIM, the average depth accuracy
at 0.1m, and the RMS depth error for all sequences.



DOG 1 (V1)
(626 images)

DOG 1 (V2)
(531 images)

CAT 1 (V1)
(641 images)

CAT 1 (V2)
(632 images)

CAT 2 (V1)
(834 images)

CAT 2 (V2)
(901 images)

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
HyperNeRF [2] .634 12.84 .673 .432 14.27 .721 .521 14.86 .632 .438 14.87 .597 .641 12.32 .632 .397 15.68 .657
D2NeRF [4] .540 13.37 .694 .546 11.74 .685 .687 10.92 .545 .588 11.88 .548 .556 12.55 .664 .595 12.71 .604

HyperNeRF (w/ depth) .373 16.86 .730 .425 16.95 .740 .532 14.37 .621 .371 15.65 .617 .330 18.47 .728 .376 16.56 .670
D2NeRF (w/ depth) .507 13.44 .698 .532 11.88 .690 .685 10.81 .534 .580 12.00 .563 .561 12.59 .656 .553 12.76 .629

Ours (w/ depth) .271 17.60 .745 .313 17.78 .768 .382 15.77 .657 .333 16.44 .652 .237 21.22 .793 .281 18.52 .713

CAT 3
(767 images)

HUMAN 1
(550 images)

HUMAN 2
(483 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
HyperNeRF [2] .592 13.74 .624 .632 11.94 .603 .585 14.97 .620 .487 15.04 .699 .462 13.52 .512 .531 14.00 .635
D2NeRF [4] .759 11.03 .578 .588 11.88 .638 .630 12.13 .599 .576 12.41 .652 .628 10.41 .453 .611 11.97 .608

HyperNeRF (w/ depth) .514 14.86 .635 .501 13.25 .664 .445 15.58 .665 .450 15.01 .704 .456 14.40 .535 .428 15.80 .667
D2NeRF (w/ depth) .730 11.08 .582 .585 12.14 .638 .609 12.11 .612 .608 12.30 .633 .645 10.51 .451 .599 12.02 .611

Ours (w/ depth) .261 19.89 .734 .213 18.39 .778 .264 16.73 .712 .256 16.69 .756 .233 17.67 .630 .278 18.11 .724

Table 1: Quantitative Comparisons on Novel View Synthesis (Visual Metrics). We compare our method to HyperNeRF [2], D2NeRF
[4], and their depth-supervised variants on the 11 sequences of our stereo RGBD dataset, in terms of LPIPS, PSNR, and SSIM. Our method
significantly outperforms all baselines for all sequences.

DOG 1 (V1)
(626 images)

DOG 1 (V2)
(531 images)

CAT 1 (V1)
(641 images)

CAT 1 (V2)
(632 images)

CAT 2 (V1)
(834 images)

CAT 2 (V2)
(901 images)

Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓
HyperNeRF [2] .107 .687 .176 .870 .316 .476 .314 .564 .277 .765 .252 .811
D2NeRF [4] .219 .463 .220 .456 .346 .334 .403 .314 .333 .371 .339 .361

HyperNeRF (w/ depth) .352 .331 .357 .338 .552 .206 .596 .209 .605 .154 .612 .170
D2NeRF (w/ depth) .338 .423 .270 .445 .510 .325 .362 .313 .438 .298 .376 .318

Ours (w/ depth) .841 .165 .790 .167 .889 .184 .894 .124 .967 .050 .925 .081

CAT 3
(767 images)

HUMAN 1
(550 images)

HUMAN 2
(483 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓ Acc@0.1m↑ ϵdepth↓
HyperNeRF [2] .213 .800 .053 .821 .067 1.665 .072 .894 .162 .862 .198 .855
D2NeRF [4] .231 .523 .066 1.063 .128 .890 .078 .847 .126 .880 .247 .739

HyperNeRF (w/ depth) .451 .285 .211 .591 .249 .611 .283 .565 .214 .613 .439 .374
D2NeRF (w/ depth) .243 .496 .086 .984 .131 .813 .154 .789 .176 .757 .302 .549

Ours (w/ depth) .949 .066 .909 .142 .849 .142 .827 .204 .914 .104 .895 .131

Table 2: Quantitative Comparisons on Novel View Synthesis (Depth Metrics). We compare our method to HyperNeRF [2], D2NeRF [4],
and their depth-supervised variants on the 11 sequences of our stereo RGBD dataset, in terms of the average accuracy at 0.1m (Acc@0.1m)
and the RMS depth error ϵdepth (units: meters). Our method significantly outperforms all baselines for all sequences.
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Figure 2: Object Removal. Our compositional scene representa-
tion enables object removal. We remove the HUMAN and then the
PET object from our composite rendering process and display the
resulting renderings.

D. Reconstruction and Applications

Geometry and Embodied View Synthesis. In Figure 4,
we display the novel-view reconstructions and the corre-
sponding embodied view synthesis results for the remain-
ing 5 sequences of our RGBD dataset that were not shown
in the main paper: sequences HUMAN 1, DOG 1 (v2), CAT
1 (v2), CAT 2 (v2), CAT 3.

Object Removal. Our compositional scene representa-
tion allows for easy object removal. To remove object k
from our trained scene representation, one skips j = k in
the summation that appears in the compositing process de-
scribed by Equation 5 of the main paper. We showcase ob-
ject removal in Figure 2.



DOG 1
(626 images)

CAT 1
(641 images)

CAT 2
(834 images)

HUMAN 1
(550 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑
w/o depth .307 .296 .496 .051 .287 .193 .314 .125 .376 .206 .519 .017 .372 .154
Full (w/ depth) .271 .841 .382 .889 .237 .967 .213 .909 .256 .827 .233 .914 .268 .898

Table 3: Ablation Study on Depth Supervision. Depth supervision improves our model both in terms of the visual (LPIPS) and depth
(Acc@0.1m) metrics, an observation that is consistent with the qualitative results displayed in Figure 7.

Methods
Optimizes

Camera
Deformation

Field
Deformable

Objects
Root-Body

Initialization
Root-Body

Motion

DOG 1
(626 images)

CAT 1
(641 images)

CAT 2
(834 images)

HUMAN 1
(550 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑

(1) Full ✓ NBS ✓ ✓ ✓ .271 .841 .382 .889 .237 .967 .213 .909 .256 .827 .233 .914 .268 .898

(2) w/o cam. opt. ✗ NBS ✓ ✓ ✓ .315 .801 .407 .898 .270 .959 .202 .920 .268 .833 .283 .851 .294 .885

(3) w/ SE(3)-field ✓ SE(3)-field ✓ ✓ ✓ .274 .833 .443 .786 .257 .930 .217 .893 .395 .619 .245 .898 .302 .841

(4) w/o deform. field ✓ None ✗ ✓ ✓ .297 .833 .408 .872 .250 .940 .243 .862 .298 .798 .285 .833 .296 .867

(5) w/o root-body init. ✓ NBS ✓ ✗ ✓ .311 .821 .410 .848 .251 .951 .214 .892 .322 .747 .250 .899 .293 .870

(6) w/o root-body ✗† NBS ✓ ✗ ✗ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(7) w/o root-body (SE3) ✗ SE(3)-field ✓ ✗ ✗ .373 .703 .437 .749 .311 .892 .376 .640 .326 .758 .328 .805 .360 .766

Table 4: Ablation Study on Motion Modeling. Ablating camera-pose optimization (row 2), changing the deformation field (row 3), remov-
ing deformation modeling (row 4), or removing PoseNet initialization of object root-body poses (row 5) moderately hurts the visual and
depth metrics. Importantly, removing root-body modeling entirely (row 6) prevents our method from converging (N/A), as the deformation
field alone has to explain global object motion (see Figure 2 in the main paper). We perform another ablation (row 7) that replaces Total-
Recon’s neural blend skinning (NBS) function with the more flexible SE(3)-field [1], which does converge but still performs worse than
other converging ablations. These experiments justify Total-Recon’s hierarchical motion representation, which decomposes object motion
into global root-body motion and local articulations. †When ablating root-body poses, we freeze the camera poses to prevent the object
fields, which are now all defined in the world space, from learning different camera poses during their separate pre-training processes.

E. Additional Ablation Studies
E.1. Ablation Study on Depth Supervision

In this section, we perform an ablation study on depth
supervision for additional sequences in our dataset. Figure
7 shows that while removing depth supervision from Total-
Recon does not significantly deteriorate the training-view
RGB renderings, it induces critical failure modes as shown
in the novel-view 3D reconstructions: (a) Floating objects:
for the HUMAN 1 & DOG 1, DOG 1, HUMAN 1, and CAT
2 sequences, the foreground objects float above the ground,
as evidenced by their shadows. (b) Objects that sink into
the background: for the HUMAN 2 & CAT 1 sequence, the
reconstructed cat is halfway sunk into the ground. (c) In-
correct occlusions: for the HUMAN 1 & DOG 1 sequence,
the human is incorrectly occluding the dog. (d) Lower re-
construction quality: for the HUMAN 2 & CAT 1 sequence,
the cat displays lower reconstruction quality, and for all se-
quences except HUMAN 1 & DOG 1 and CAT 2, the back-
ground exhibits lower reconstruction quality.

These observations are corroborated by Table 3, which
shows that depth supervision significantly improves our
method’s visual and depth metrics over all sequences. An-
other reason for the large difference in metrics is that the
novel-view cameras computed for the non-depth-supervised
version may not be entirely accurate. This is because our
method optimizes the camera poses during training, mean-
ing that in the absence of the depth loss, the training-

view camera poses may converge to a different scale to the
ground-truth left-to-right camera transform from Section B,
resulting in slightly misaligned novel-view cameras.

E.2. Ablation Study on Motion Modeling

In this section, we perform ablation studies on Total-
Recon’s motion model for a more comprehensive set of de-
sign choices than those presented in the main paper. Table
4 and Figure 6 show that ablating camera-pose optimization
(row 2) worsens the metrics but does not result in qualitative
deterioration of the scene reconstruction. This suggests that
the ARKit camera poses used to initialize Gt

0 (Equation 3 of
main paper) are already reasonably accurate. Changing the
deformation field from Total-Recon’s neural blend skinning
(NBS) function to the SE(3)-field used in HyperNeRF [2]
(row 3) further worsens the metrics, which are reflected in
the minor artifacts that appear in the foreground reconstruc-
tions. Removing the deformation field entirely (row 4) also
worsens the results, as our method now has to explain each
object’s (non-rigid) motion solely via its rigid, root-body
poses. As a result, this ablation can only recover coarse
object reconstructions that fail to model moving body parts
such as limbs. Ablating PoseNet-initialization of root-body
poses (row 5) is just as detrimental, resulting in noisy ap-
pearance and geometry and sometimes even failed object
reconstructions (see DOG 1 sequence in Figure 6).

Most notably, Table 4 shows that removing object root-
body poses entirely (row 6) prevents our method from con-
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Figure 3: Ablation Study on Joint-Finetuning. Joint-finetuning
enables Total-Recon to learn the correct human-pet interactions,
particularly for frames without any detected object masks.

verging, even though the deformation field should be suffi-
cient (in theory) to represent all continuous motion. How-
ever, when root-body poses are removed from our method,
each object’s canonical model is defined in the static, world
coordinate frame (Equation 1 from main paper) as opposed
to the moving, object-centric coordinate frame (Equation 4
from main paper). Therefore, the deformation field alone
has to explain global object motion by learning potentially
large deviations from the canonical model, significantly
complicating optimization. We posit that Total-Recon’s
neural blend skinning (NBS) function is too constraining
of a deformation field to model global object motion, so we
perform another ablation that replaces NBS with the more
flexible SE(3)-field (row 7). This ablation does converge
but still performs worse than other converging ablations.

These diagnostics justify Total-Recon’s hierarchical mo-
tion representation, which explicitly models objects’ root-
body motion; even root-bodies without a deformation field
(row 4) or poorly initialized root-bodies (row 5) outperform
no root-bodies (row 6). Our ablations also suggest that the
poor performance of the baseline methods may be attributed
to the lack of object-centric motion modeling, especially
since the baseline method D2NERF (W/ DEPTH) and the
ablation W/O ROOT-BODY (SE3) both exhibit the ghosting
artifacts that indicate failed foreground reconstruction (see
Figures 5 and 6, respectively). Note that these two methods
are not strictly equivalent.

E.3. Ablation Study on Joint Finetuning

In Figure 3, we show that joint-finetuning is indispens-
able by visualizing its effects on frames without any de-
tected object segmentation masks, which often exist in
human-pet interaction videos due to partial occlusions.
Since our method does not supervise on frames without seg-
mentation masks during pre-training, the appearance, defor-
mation, and root-body pose of the deformable foreground
objects remain uncertain for such frames.

For the HUMAN1 & DOG1 sequence, the dog ends up
penetrating the human arm; for the HUMAN2 & CAT1 se-
quence, the cat lies in front of the human hand rather than
behind it. Joint-finetuning resolves these issues as it does
not optimize a silhouette loss, enabling our scene repre-
sentation to be supervised on all frames of the training se-
quence. By jointly optimizing all objects in the scene, our
scene representation learns the correct human-pet interac-
tions by reasoning about occlusions, resulting in a general
improvement of the visual metrics, as shown in Table 5.
Note that joint-finetuning doesn’t always improve the depth
metrics. We posit that the depth supervision during pre-
training was sufficient in learning a metric model that the
qualitative improvements brought by joint-finetuning are
not always reflected in the metrics.

F. Societal Impact
We have demonstrated that our method can holisti-

cally reconstruct a dynamic scene containing multiple de-
formable objects, such as humans and pets - all from a sin-
gle RGBD video captured from a commodity consumer de-
vice. We believe that a truly holistic reconstruction of the
background geometry, each moving object, its own defor-
mation, and camera pose would enable a number of new
applications ranging from augmented reality to asset gen-
eration for virtual worlds, especially given the ubiquity of
consumer-grade RGBD sensors.

However, the reconstruction capabilities of our method
could be a double-edged sword; the very ease with which
one could reconstruct a realistic 3D human model from
nothing but a casually captured RGBD video poses poten-
tial privacy concerns. For instance, one could extract sen-
sitive personal information such as height and other body
measurements from a metric human model reconstructed
with our method. In terms of appearance synthesis, our
method poses similar types of risks as Deepfakes pose to
society, especially given that the deformable object model
used in our method is animatable (i.e., user-drivable) [5].
An important future direction of research that needs to ac-
company 3D reconstruction research would therefore be
methods of distinguishing photorealistic rendered videos
from genuine content.



DOG 1
(626 images)

CAT 1
(641 images)

CAT 2
(834 images)

HUMAN 1
(550 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑ LPIPS↓ Acc@0.1m↑
w/o joint-ft .273 .859 .379 .889 .239 .963 .207 .916 .259 .840 .241 .901 .268 .902
Full (w/ joint-ft) .271 .841 .382 .889 .237 .967 .213 .909 .256 .827 .233 .914 .268 .898

Table 5: Ablation Study on Joint-Finetuning. Joint-finetuning improves LPIPS across most sequences but does not always improve the
average depth accuracy at 0.1m . We posit that using a depth signal during pre-training of the individual objects is sufficient for learning a
metric model, such that the qualitative improvements induced by joint-finetuning (Figure 3) are not always reflected in the metrics.
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Figure 4: Embodied View Synthesis and 3D Filters (Additional Sequences). We visualize the 3D reconstructions (rendered from the novel
view) and the applications enabled by Total-Recon for the remaining 5 sequences of our RGBD dataset that were not shown in the main
paper. The yellow and blue camera meshes in the mesh renderings represent the egocentric and 3rd-person-follow cameras, respectively. To
showcase the 3D filter, we attach a sky-blue unicorn horn to the forehead of the foreground object, which is automatically propagated across
all frames. Full-length videos can be found at https://andrewsonga.github.io/totalrecon/applications.html.



H
um

an
 2

 &
 C

at
 1

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

H
um

an
 2

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

D
og

 1

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

D
og

 1
 (v

2)

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

C
at

 1

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

C
at

 1
 (v

2)

Novel View 
(GT)

Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

Figure 5: Qualitative Comparisons on Novel View Synthesis (Additional Sequences). We compare Total-Recon to depth-supervised
variants of HyperNeRF [2] and D2NeRF [4] on the task of stereo-view synthesis (the left camera is used for training and the images are
rendered to the right camera). While the baselines are only able to reconstruct the background at best, Total-Recon is able to reconstruct
both the background and the moving deformable object(s), demonstrating holistic scene reconstruction. Full-length videos can be found at
https://andrewsonga.github.io/totalrecon/nvs.html.
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Figure 5: [Continued] Qualitative Comparisons on Novel View Synthesis (Additional Sequences). We compare Total-Recon to depth-
supervised variants of HyperNeRF [2] and D2NeRF [4] on the task of stereo-view synthesis (the left camera is used for training and the
images are rendered to the right camera). While the baselines are only able to reconstruct the background at best, Total-Recon is able to
reconstruct both the background and the moving deformable object(s), demonstrating holistic scene reconstruction. Full-length videos can
be found at https://andrewsonga.github.io/totalrecon/nvs.html.
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Figure 6: Ablation Study on Motion Modeling. We render novel views of the ablations in Table 4. Ablating camera-pose optimization (w/o
cam. opt.) does not qualitatively change the scene reconstruction. Changing the deformation field from Total-Recon’s neural blend skinning
function to an SE(3)-field (w/ SE(3)-field) results in minor artifacts in the foreground reconstruction. Removing the deformation field
entirely (w/o deform. field) produces coarse object reconstructions that fail to model moving body parts such as limbs. Removing PoseNet-
initialization of object root-body poses (w/o root-body init.) results in noisy and sometimes even failed object reconstructions. We omit the
ablation without root-body poses (w/o root-body) as it does not converge, and instead present a version that does converge (w/o root-body
(SE3)). However, this ablation also performs significantly worse than previous ablations, as evidenced by the ghosting artifacts indicative
of failed foreground reconstruction. These experiments justify Total-Recon’s hierarchical motion representation, which explicitly models
objects’ root-body motion. Full-length videos can be found at https://andrewsonga.github.io/totalrecon/ablation_
objmotion.html.
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Figure 6: [Continued] Ablation Study on Motion Modeling. We render novel views of the ablations in Table 4. Ablating camera-
pose optimization (w/o cam. opt.) does not qualitatively change the scene reconstruction. Changing the deformation field from Total-
Recon’s neural blend skinning function to an SE(3)-field (w/ SE(3)-field) results in minor artifacts in the foreground reconstruction.
Removing the deformation field entirely (w/o deform. field) produces coarse object reconstructions that fail to model moving body
parts such as limbs. Removing PoseNet-initialization of object root-body poses (w/o root-body init.) results in noisy and sometimes
even failed object reconstructions. We omit the ablation without root-body poses (w/o root-body) as it does not converge, and in-
stead present a version that does converge (w/o root-body (SE3)). However, this ablation also performs significantly worse than pre-
vious ablations, as evidenced by the ghosting artifacts indicative of failed foreground reconstruction. These experiments justify Total-
Recon’s hierarchical motion representation, which explicitly models objects’ root-body motion. Full-length videos can be found at
https://andrewsonga.github.io/totalrecon/ablation_objmotion.html.
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Figure 7: Ablation Study on Depth Supervision. While removing depth supervision from Total-Recon (COMPLETE MODEL) doesn’t
significantly hamper the training-view RGB renderings, it induces the following failure modes in the novel-view 3D reconstructions. (a)
Floating objects: for the HUMAN 1 & DOG 1, DOG 1, HUMAN 1, and CAT 2 sequences, the foreground objects float above the ground,
as evidenced by their shadows. (b) Objects that sink into the background: for the HUMAN 2 & CAT 1 sequence, the reconstructed cat is
halfway sunk into the ground. (c) Incorrect occlusions: for the HUMAN 1 & DOG 1 sequence, the human is incorrectly occluding the dog.
(d) Lower reconstruction quality: for the HUMAN 2 & CAT 1 sequences, we observe that the cat has lower reconstruction quality, and, for
all sequences except HUMAN 1 & DOG 1 and CAT 2, we observe that the background object has lower reconstruction quality. Full-length
videos can be found at https://andrewsonga.github.io/totalrecon/ablation_depth.html.
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