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In this Supplementary Material, we first analyze the sta-
tistical characteristics of the whole synthetic dataset in the
HSV space in Section 1. Then, the details of the Feature
Fusion Block in SRUDC are given in Section 2. More vi-
sual comparisons on both the real-world and the synthetic
datasets are given in Section 3 and Section 4.

1. Statistical Characteristics of Synthetic
Dataset in HSV Space

As mentioned in the main body of our paper, we con-
duct a statistical analysis of the entire synthetic dataset in
the HSV color space to illustrate the superiority of our en-
hanced image formation pipeline (IFP). Fig. 2 shows the
statistical mean values of H, S, and V channels of different
datasets, including the real-world dataset [4], the synthetic
dataset generated from our enhanced IFP, and the synthetic
dataset generated from Feng et al. [1]. In each subgraph, the
horizontal axis indicates the mean value of H, S, or V chan-
nel and the vertical axis indicates the image quantity ratio.
The red and blue histograms respectively denote the statis-
tical mean H, S, and V values of the display-free (ground-
truth) images and under-display camera (UDC) images.

In the first row of Fig. 2, the statistical mean H and S val-
ues of UDC images demonstrate obvious deviations com-
pared with those of display-free images, i.e., the blue line
is offset to the left relative to the red line. Such offsets of
the mean Hue and saturation are caused by the haziness and
contrast distortions in UDC images. In the second row, we
can find that the synthetic dataset generated from our en-
hanced IFP exhibits similar offsets in H- and S-channel dis-
tributions. However, in the third row, the blue and red lines
of the first two subgraphs almost overlap. This indicates that
the IFP proposed by Feng et al. [1] cannot simulate such
offsets, which are observable in the real-world dataset. Re-
garding the V-channel distribution, the differences between
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Figure 1. The schematic diagram of FFB.

the display-free and UDC images are small in the synthetic
dataset generated by our enhanced IFP, which is consistent
with the findings proposed by Luo [4].

2. Feature Fusion Block of SRUDC
Fig. 1 presents the specific design of our feature fusion

block (FFB). In this block, we aim to modulate the encoder
features Fes in the image branch with the global informa-
tion brought by the features Uos from the scattering branch.
Inspired by the formulation of the UDC scattering model
proposed in the main body, we apply the affine transforma-
tion in FFB. Specifically, we compute the coefficient v and
the offset w from Uo through the combinations of two 1×1
convolution layers and a leaky ReLU function. Eventually,
Fe is recalibrated to be the output feature Fo by:

Fo = v � Fe +w. (1)

3. Visual Comparison on Real-world Dataset
We provide more visual comparisons with state-of-the-

art methods, including DISCNet [1], DAGF [5], DWFormer
[6], UDCUNet [3], and BNUDC [2], on real-world data
in Fig. 3 and Fig. 4. Our proposed method suppresses
the haziness and contrast distortion caused by the scatter-
ing effect. In addition, our method does not produce color



(a) Statistical mean values of the H, S, and V channels of the real-world dataset captured by Luo et al. [4].

(b) Statistical mean values of the H, S, and V channels of the synthetic dataset generated from our enhanced IFP.

(c) Statistical mean values of the H, S, and V channels of the synthetic dataset generated from Feng et al.. [1]

Figure 2. The histograms represent statistical mean values of the H, S, and V channels. The horizontal axis of each graph indicates the
value of H, S, or V channel, and the vertical axis indicates the image quantity ratio. (a) The statistical mean values of the H, S, and V
channels of the real-world dataset [4]. (b) The statistical mean values of the H, S, and V channels of the synthetic dataset generated from
our enhanced IFP. (c) The statistical mean values of the H, S, and V channels of the synthetic dataset generated from Feng et al. [1].

shifts as other models, e.g., the wrong grass color induced
by BNUDC in the second example of Fig. 3 and the wrong
ground color caused by DWFormer in the second example
of Fig. 4. From the comparison of the last two examples in
Fig. 4, we can find that our method generates satisfactory
results even on UDC images with strong haziness.

4. Visual Comparison on Simulated Dataset

Fig. 5 presents more visual comparisons with state-of-
the-art methods on synthetic UDC images. As can be seen,
our method generates sharper edges than the existing SOTA
models, e.g., edges of saturation regions in the first and third

samples. Compared with the recovered background images
of other methods, our results are closer to the ground truths
with higher PSNR and SSIM values.
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Figure 3. Visual comparison on real-world images.
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Figure 4. Visual comparison on real-world images.
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Figure 5. Visual comparison on synthetic images.


