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A. Further Analysis of Threshold τ

In this supplementary section, we offer theoretical and
empirical support to determine the threshold value, τ . As
defined in Eq. (5) of our original manuscript, w∗, which is
used as a foreground predictor, can be rewritten with the
sample global importance α from Eq. (9) as follows:
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where fi is a feature vector, f̂i = fi
||fi|| , N = NDHW for

simplicity and C denotes a constant. In Eq. (15), τ is a
threshold that is used to determine soft pseudo labels for
the training examples using the norm of the feature vector.

A straightforward approach to determine the thresh-
old is to calculate the expected value of feature vec-
tor norms across the training set, given by τ =
E[||fi||] =

∑N
i ||fi||/N . However, using a uniform prob-

ability distribution for expected value calculations does not
provide information on the directions and similarities be-
tween feature vectors. Therefore, we propose a joint proba-
bility distribution that considers the correlations among fea-
ture vectors to compute the expected value. Let us denote
two independent random variables, X and X ′, which share
the sample space of feature vector norms, and XX ′ is a
joint random variable. To utilize the relationships between
all pairs of feature vectors, we employ the cosine similarity
to compute the joint probability mass function of XX ′. The
joint probability mass function of XX ′ is then expressed as
follows:

P (X = ∥fi∥, X ′ = ∥fj∥) ∝ f̂⊤i f̂j , (16)

and the expectation of XX ′ is given by
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where f̂⊤i f̂j > 0,∀i, j, because the last layer of pre-trained
encoder Φ(·) contains a ReLU operation.

Let us denote τ = E[X], and then the expected value
of a jointly distributed discrete random variables of two in-
dependent random variables is given by the product of the
expected values of two random variables as follows:

τ2 = (E[X])2 = E[X]E[X ′] = E[XX ′] (19)
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where the denominator and numerator in Eq. (21) can be
expressed by u and v as in Eq. (15) as follows:
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Therefore, τ is computed as follows:
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. (25)



Table 8. Comparison between our method and several object localization methods that use the additional classifier, EfficientNetB7 [11], in
terms of Top-1, Top-5 and GT-known Loc on CUB-200-2011 test set and ImageNet-1K validation set. Loc. and Cls. denote the localization
and classification backbones, respectively. † indicates MoCo v2 pre-trained backbone.

Method Loc. Cls. S T CUB-200-2011 ImageNet-1K

Top-1 Loc Top-5 Loc GT-Known Top-1 Loc Top-5 Loc GT-Known

Weakly supervised method
SPOL ’21 [12] ResNet50 EfficientNetB7 ✓ ✓ 80.12 93.44 96.46 59.14 67.15 69.02
Self-supervised methods
PSOL ’20 [16] DenseNet161 EfficientNetB7 ✗ ✓ 80.89 89.97 91.78 58.00 65.02 66.28
C2AM ’22 [14] DenseNet161 EfficientNetB7 ✗ ✓ 81.76 91.11 92.88 59.56 67.05 68.53
w/o finetuning
Ours ResNet50† EfficientNetB7 ✗ ✗ 84.90 94.74 96.67 60.17 67.87 69.30

Table 9. Comparison between the proposed method and the state-of-the-
art weakly supervised object localization methods in terms of MaxBox-
AccV2 on CUB-200-2011 and ImageNet-1K.

Methods Backbone CUB-200-2011 ImageNet-1K

WSOL methods
BGC ’22 [9] ResNet50 75.90 68.70
CREAM ’22 [15] ResNet50 73.50 67.40
DAOL ’22 [18] ResNet50 69.87 68.23
BagCAM ’22 [17] ResNet50 84.88 69.97
ViTOL ’22 [6] ViT-S 73.17 70.47
SCM ’22 [1] ViT-S 89.90 -
Self-supervised methods
C2AM ’22 [14] ResNet50 83.80 66.80
w/o finetuning
MoCo v2 [3] + Ours ResNet50 87.26 66.38
DINO [2] + Ours ViT-S 88.83 73.04

B. Additional WSOL Results

Advanced Classifier In compare our method with other
weakly supervised object localization methods [12, 16, 14]
that utilize more advanced classifiers, such as Efficient-
NetB7 [11], we also evaluate our method using Efficient-
NetB7 for classification in a weakly supervised setting.
As shown in Table 8, our method outperforms other self-
supervised methods which utilize much deeper networks,
such as DenseNet161 [8], instead of ResNet50 [7], by sig-
nificant margins. Furthermore, our method exhibits su-
perior performances compared to the weakly supervised
method [12] which relies on explicit class labels for train-
ing, while our method and self-supervised methods solely
use pre-trained classification networks for classification.

MaxBoxAccv2 In cater various demands for localization
accuracy, [4] proposed evaluating WSOL methods through
MaxBoxAccV2. MaxBoxAccV2 is calculated by averaging
the MaxBoxAcc performance across various IoU threshold
δ ∈ {0.3, 0.5, 0.7}. As shown in Table 9, our method sur-
passes other self-supervised and weakly supervised meth-
ods on ImageNet. In the CUB-200-2011 dataset as well, our
approach achieves performance with negligible differences
from the state-of-the-art, independent of the architecture.

Table 10. Comparison of the performance of our method between
Moco v2 and supervised pre-trained ResNet50 on UOL setup.

Pre-training CUB Cars Aircraft Dogs ImageNet

Supervised 88.45 96.98 98.47 89.53 63.22
MoCo v2 96.67 99.69 98.71 95.07 66.89

Supervised MoCo v2 Supervised MoCo v2 Supervised MoCo v2

Figure 7. Visualization of activation maps using the supervised and self-
supervised (MoCo v2) pre-trained models.

C. Advantage of SSL Pre-trained Backbone
We present the results of both supervised and self-

supervised pre-trained models in Table 10. Interestingly, we
found that the results of the supervised model were inferior
to those of the self-supervised model. This disparity can
be linked to a well-established challenge in object localiza-
tion with class-level supervision [5, 10, 13]. Class-level su-
pervised models often concentrate mainly on the most dis-
criminative parts, as they are trained to learn features that
have a substantial impact on classification. In the context of
our method, which does not involve fine-tuning the model,
this issue becomes more pronounced. To further illustrate
this phenomenon, we include examples in Fig. 7. Here, the
supervised model activates only the most visually promi-
nent features, while the self-supervised model demonstrates
a more comprehensive ability to localize the entire object.

D. More Qualitative Results
We also include further qualitative results to illustrate

the operating process of our method for selecting represen-
ter points, as depicted in Figure 3 of the main manuscript.
As shown in Figure 8, we present examples that highlight
global sample importance, the similarity between features,
and representer values for given points within an image.
These examples reveal that that representer values tend to
escalate when both the feature similarity and the importance
α of each training example are pronounced. In the visu-
alizations of representer value maps, red regions indicate
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Figure 8. Illustration of how our method computes activation maps using two example points, yellow and green stars. Both importance
maps and representer value maps are normalized to be centered at zero, unlike similarity maps’ min-max normalization. Hence, red and
blue regions denote positive and negative representer points, respectively. Green or yellow colored regions indicate very small absolute
values of the representer value.

excitatory points for the foreground prediction, while blue
regions indicate inhibitory points. By fostering a compre-
hensive understanding of model’s predictions, it provides
valuable insights into the reasoning behind the model’s spe-
cific predictions and exclusions.

E. Limitations and Social Impacts

Since our method does not rely on ground-truth anno-
tations, which reduces the risk of bias, but it increases the
likelihood of errors in object localization when compared to
supervised methods. In addition, our method shares com-
mon limitations with other unsupervised, self-supervised,
or weakly supervised methods, such as difficulties in de-
tecting and recognizing rare, small, or complexly appearing
objects including objects with similar textures or shapes and
those set against cluttered backgrounds. Additionally, since
our approach utilizes training examples, it carries a potential
risk of privacy violations if the dataset is not meticulously
curated. However, despite these limitations, we believe our
method offers a unique advantage: it provides explainabil-

ity about how it discovers objects. This ability sets our ap-
proach apart from other methods and adds to its appeal.
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