A. More Experiments

We first assess the performance of our proposed method
in an ideal scenario where the key points, correspond to
the ones from the ground truth. To hinder training and in-
ference, we insert additional key points as (1) random in-
termediate points between known edges and (2) randomly
sampled locations in the images. Here, our assumption in
Section [3| that the set V'’ suffices to generate the ground
truth graph, holds by construction. We compare our method
against several baselines that learn to connect edges be-
tween key points, using the same feature extraction pipeline,
described in Section [3.1] as our model. Cls is a classifica-
tion network that predicts for all pairs of key points a value
{0, 1} corresponding to the existence of an edge. GCN im-
plements a graph neural network that predicts directly the
adjacency matrix. We also present an autoregressive version
of our model ARM, that is trained with cross-entropy loss to
predict the pre-defined ordered sequence of key points. We
use this model to initialize ours. Results are presented in
Table [3]in the main text.

As expected, the ARM model achieves a low perplexity
score when evaluated against the corresponding sequence,
ordered according to the autoregressive order, but suffers
in predicting the edges when in random order. The ARM
underperforms because of frequent early terminations and
the implicit inability to revisit key points, what the desired
final metric is concerned, here APLS. Reward and value es-
timates enable a different training scheme that deeply cor-
relates with the desired objective, fixing possible alignment
issues.

B. Interpretability

We visualize attention (of the Transformer II module),
using the attention flow proposed in [1]], in Fig. 8| To cre-
ate attention scores per edge, we aggregate scores for the
pair of tokens that define each edge. New predictions lay
increased attention to already generated junctions, parallel
road segments, and other edges belonging to the same road
segment.

We also compare APLS results achieved by varying the
difficulty of the ground truth images in terms of the total
number of junctions (vertices with a degree greater than 2)
and in terms of the average length of road segments that are
present, in Fig.[9] Our method explicitly captures informa-
tion regarding the degree of the key points during the search,
while it can encode better global information, even across
larger distances. It is not a surprise perhaps then, that it out-
performs the baselines more convincingly as the difficulty
of the ground truth road network increases.

Finally, we visualize an example of an imagined rollout
trajectory at a single step of our algorithm in Fig.[I0] During
a single inference step, our method uses tree search to look

ahead into sequences of actions in the future. For our ex-
ample, we have chosen a relatively smaller number of sim-
ulations (10) for better visual inspection. We also show the
corresponding environment states reached, which are, how-
ever, not explicitly available to the model, as it is searching
and planning using a learned model of the environment.

C. Dataset creation

We use CityEngine, a 3D modelling software for creat-
ing immersive urban environments. We generate a simple
road network and apply a rural city texture on the created
city blocks, provided by [23]. We then uniformly gener-
ate trees of varying height and size along the side walks of
the generated streets. We then iteratively scan the generated
city by passing a camera of specific orientation and height.
We repeat the same process after suitable modifications to
the texture, for the generation of the street masks, as well
as the vegetation masks, that correspond to only the plants
along the side walks. Some examples of the generated im-
ages are provided in Fig. We note that additional occlu-
sion can be caused by the relation of the camera with the
3D meshes corresponding to buildings. These occlusions
are, however, not captured by our generated masks, and we
can expect them to contribute partially to the fragmented
segmentation results.

We train a segmentation-based model, LinkNet, as our
baseline. We rasterize the ground truth graph to create
pixel-level labels and train by maximizing the intersection
over union, which is commonly done in practice. We note
that there is a tradeoff between the nature of the predictions
and the choice of the line-width with which the ground truth
graph is rasterized. A large width achieves better results
in terms of connectivity of the predicted graph but results
in poorer accuracy in the final key points’ locations. Fur-
thermore, when providing a large width, areas in the image
with more uncertainty, e.g. vegetation that is not above a
road segment, are also predicted as road networks with high
certainty, leading to spurious, disconnected road segments.
To highlight the advantages of our method compared to this
baseline and in order to promote more meaningful predic-
tions, we select a relatively smaller width.

D. Architecture details

As an image backbone model, we use a ResNet-18 for
the synthetic dataset and a ResNet-50 for the real dataset
experiments. We extract features at four different scales, af-
ter each of the 4 ResNet layers. To extract features for each
key point, we interpolate the backbone feature maps based
on the key points’ locations. We use different learned em-
beddings based on the actual key points’ locations. For the
key points embedding model, we use a transformer encoder
with 12 self-attention layers and a dropout rate of 0.10. We



Figure 8. We visualize attention by aggregating attention scores for key points that form the same edge. White denotes the latest edge
added, for which the attention scores are calculated. Colours indicate the amount of attention on any current edge in the graph.
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Figure 9. APLS improvement of our method, compared to the Orientation method [8]], based on images capturing a ground distance area
of 400x400 meters of the SpaceNet dataset. (Left) We vary the number of junctions present, and (right) the average road segment length

(in meters).

use layer normalization and GELU activation functions.

For the edge-embeddings model, we use the respective
key points embedding, along with learned position and type
embeddings, which we all sum together. As aforemen-
tioned, we can initialize the current edge sequence based
on previous predictions, allowing our model to refine any
initial prediction provided. Again, we use the same trans-
former architecture with 12 self-attention layers, and a
dropout rate of 0.10.

Finally, the architecture of the dynamics network and the
value prediction network are shown in Fig.[T2] For the value
estimation, we also provide the current environment step,
as we execute steps in an environment with a bounded time
horizon. Finally, the type embeddings, inspired by [36],
help to distinguish between starting and ending nodes for
each edge.

E. Implementation details
E.1. Evaluation metrics

APLS [60] constitutes a graph theoretic metric that faith-
fully describes routing properties. APLS is defined as
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where v and v’ denote a source node and its closest point
on the predicted graph if such exists within a buffer. N,
denotes the number of paths sampled and p,,,, the length
of the shortest path between two nodes. Similarly, the Too
Long Too Short (TLTS) metric [65] compares lengths of the
shortest paths between randomly chosen points of the two
graphs, classifying them as infeasible, correct, or too-long
or too-short (2/+2s) if the length of the path on the pre-
dicted graph does not differ by more than a threshold (5%)
compared to the ground truth path. Since small perturba-
tions to the predicted graph can have larger implications to
pixel-level predictions, the definitions of precision, recall
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Figure 10. Example of a ”dreamt” tree search of our model (we recommend zooming in for more details). Here, images correspond to the
environment observations by following the respective sequence of actions, which are, however, not given as input to the model but only
portrayed for visual purposes. The model has only access to the original observation and “dreamt” trajectories on the learned latent space.
The root of the search tree is indicated by the colour red. Orange nodes correspond to the children that attain the highest estimated value.
We also provide reward and value estimates of our model based on the current latent representation. We perform a smaller number of

simulations into the future, for visual purposes.

and intersection over union were relaxed in [66), [64]] leading
to the metrics Correctness/Completeness/Quality (CCQ).

Still, some types of errors, such as double roads or over-
connections, are not penalized from the above metrics [14].
We therefore additionally include new metrics introduced
in that compare Paths, Junctions and Sub-graphs of the
graphs in question, producing respectively precision, recall
and f; scores. For the final similarity score used in Eq.
we use a linear combination of the aforementioned metrics,

more details are available in the supplementary material.

E.2. Dataset Information

We use the following datasets to train our models, i.e.
baselines and our newly proposed RL agent.

SpaceNet  [60] includes a road network of over 8000 Km
over four different cities: Vegas, Paris, Shanghai, and Khar-
toum, where the complexity and quality, and regularity of



Figure 11. Samples from the synthetic dataset. We generate images and the corresponding street mask, overlaid with the colour red, along
with the masks of plants that are occluding the ground truth road network, overlaid with the colour green.
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Figure 12. Architecture details of the dynamics network and the value prediction network. Reward and value are determined by predicting
support of size 601. Final scalar values are calculated by an invertible transform of this support, similar to [44].

the road network depend on the city of origin. Satellite im-
ages are provided at a pixel resolution of 1300 x 1300, cor-
responding to a ground resolution of 30cm per pixel. We
split the 2780 total images into crops of size 400 x 400 with
an overlap of 100 pixels for training. To better highlight the
diversity of the satellite images from these four different
locations, we have included some randomly sampled exam-

ples in Fig.[T3]

DeepGlobe  [15] contains satellite images from 3 dif-
ferent locations with pixel-level annotations. Images have

a resolution of 1024 x 1024, with a ground resolution of
50cm per pixel. We crop the 6226 images into tiles, leading
to a similar ground truth resolution per pixel compared to
SpaceNet.

E.3. Training details

At each MCTS search step, we perform several simula-
tions from the root state s” for a number of steps k = 1,. ..
and select an action that maximizes the upper confidence
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Figure 13. Example images sampled from the four cities of the SpaceNet dataset. Images from different cities exhibit different regularity
in their road networks. The quality of the overhead satellite images may also vary.

bound [51]],
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where N(s,a),Q(s,a), P(s,a) corresponds to the visit
counts, mean values and policies, as calculated by the cur-
rent search statistics. Constants c1, co balance exploration
and exploitation. Based on a state s*~! and a selected ac-
tion a*, a new state s and reward #* are estimated through
the dynamics network. We update the mean values based on
bootstrapped values of the estimated value functions and re-
wards. We experimented with training the reward and value
support predictions with both mean squared error (MSE)
and cross-entropy loss. We opted for MSE because of its
stability. For a more in depth description of the training
scheme of MuZero we recommend [48]] and [[71]].

As hinted in the main text, we train using intermediate
rewards, a linear combination of topological metrics. We
experimented using a variety of different scores and met-
rics, but ended up using APLS, Path-based fI, Junction-
based fl and Sub-graph-based fl at a relative scale of
(0.35,0.25,0.25,0.15). We found the Sub-graph-based f1
to be more sensitive to small perturbations and therefore
weighted it less in the final combination. The metrics men-
tioned above are highly correlated, as examined in [8]]. This
correlation, though, holds when comparing the final predic-
tions. Intermediate incremental rewards are more indepen-
dent, so we still found it useful to use a mixture of them. Ini-
tially, to let our network learn basic stable rewards, we use
the segmentation prediction mask as target. That means that
we train our model to predict the graph that can be extracted
after post-processing the segmentation model’s prediction.

After pre-training the autoregressive model, we experi-
mented with fine-tuning using RL with two different learn-
ing rates, where a slower by a factor (0 — 1] rate was cho-
sen for the pre-trained modules. Here, we noticed that the
model still performed better than the ARM baseline. As it

has trouble though to escape the autoregressive order, com-
pared to the single learning rate model, results are less opti-
mal.

We finally note that by avoiding type and position en-
coding in the Transformer II module, we can ensure the
embedded graph is permutation invariant regarding the se-
quence of edges and the order of key points within an edge.
Our search graph can then be formulated into a directed
acyclic graph, circumventing unnecessary division of the
search space [9, [12]], enabling more efficient sampling [47]].
These updated search statistics are cumbersome to compute,
though, and we found no significant efficiency improve-
ment. They do, however, confirm our model’s potential
ability to handle the input graph as an unordered set, as the
problem suggests.

E.4. Producing key points

We initially train a segmentation model for predicting
pixel-level accurate masks of the road network. For this
step, we can use any model from the literature. We extract
the predicted graph by skeletonizing the predicted mask and
simplifying the graph by a smoothing threshold. We then
sample intermediate vertices along the largest in terms of
ground length edges, to enlarge the action space. We il-
lustrate a toy example of such a process in Fig. [[4 To
accelerate inference, we can also initialize our prediction
graph based on the provided segmentation mask. In such
a case, our method closer resembles previous refinement
approaches. We additionally remove edges of connected
components with small overall size and edges belonging to
roads segments leading to dead ends (that means vertices of
degree one), keeping though the corresponding key points
in the environment state. Thus, if our model deems the ex-
istence of the respective edges necessary, it can add them
once more. We plan to further investigate augmenting the
action space with the ability to remove edges in future work,
that would not require such a pre-processing strategy.



Figure 14. Example of how key points are generated. We start by evaluating a segmentation model (left) and extracting the predicted graph
(middle). We then over-sample vertices along edges to enlarge the action space (right).

E.5. Combining predictions

When creating the final per image prediction, we initially
simply generated predictions on non-overlapping patches
and fused them together. To overcome small pixel location
differences in the predicted graphs, we fuse by rasterizing
the individual graphs in the pixel domain with a line width
larger than 1. What we found more successful was to per-
form inference on overlapping patches and to initialize the
currently predicted graph based on the predictions made so
far. This is particularly useful, as road segments are often
close to the boundaries of our cropped image. Individual
inference and simple fuse can often lead to over-connected
predictions. We visualize a toy example of such a process
in Fig.[13]

For the segmentation baselines, unless specified in their
respective documentation, we perform inference by crop-
ping images to overlapping patches and normalizing the
final predicted mask based on the number of overlapping
predictions per pixel location. We also pad images around
their boundary, as done in [2]. We note some small differ-
ences in the final scores for the Orientation model 8] and
the SpaceNet dataset, compared to the ones in [14]. We as-
sume these are an outcome of different chosen parameters
for the calculation of metrics. We keep these parameters
fixed when calculating scores for all methods.

E.6. More Comparisons with Baselines

We elaborate more on the evaluation method on
Sat2Graph. The authors provided predictions correspond-
ing only to a center crop of the original SpaceNet dataset
images. For each 400 x 400 pixel image, predictions are
made for the center 352 x 352 area of the image. One could
expect slightly better results if trained in the same condi-
tions but that the gap does still seem large enough to show
the merits of our approach.

Other baselines like Neural turtle graphics [13]] and
Topological Map Extraction [26] do not have an implemen-
tation available. We do not compare against VecRoad [56]
or RoadTracer [7]], as different datasets were used for the

current evaluations. These baselines have been already
shown to underperform though in the literature, by meth-
ods that we are comparing against.

F. More examples

We showcase in Fig. [T and Fig. [I7] more examples of
the environment state progression, for the synthetic dataset.
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Figure 15. Toy example of how inference is performed in larger images. We start by cropping the image to overlapping patches. (Top)
Naive fusion leads to over-connections because of perturbation in the key points’ locations. (Bottom) We initialize subsequent graph
predictions based on the key points and edge predictions of the so far generated output from previous patches if such exists.



Starting state Last action: 1 Last action: 2 Last action: 16 Last action: 11 Last action: 15

Last action: 14 Last action: 4 Last action: 3 Last action: 4 Last action: 5 Last action: 4

Last action: 8 Last action: 7 Last action: 14

Last action: 13 Last action: 8 Last action: 13 Last action: 9 Last action: 11 Last action: 9

Last action: 13 Last action: 10 Last action: 12

Last action: 3 Last action: 10 Last action: 9

Figure 16. Example of an environment progression for the synthetic dataset. Key points’ locations are shown in blue. By over-sampling
initial segmentation predictions as shown in Fig.[T4] we can generate key points in possibly occluded areas of the image.



Starting state Last action: 16 Last action: 14 Last action: 11 Last action: 9 Last action: 13

Last action: 14 Last action: 1 Last action: 4 Last action: 2 Last action: 3 Last action: 17

Last action: 15 Last action: 6 Last action: 7 Last action: 6 Last action: 4 Last action: 6

Last action: 7 Last action: 3 Last action: 5 Last action: 8 Last action: 7 Last action: 8

Last action: 9 Last action: 6 Last action: 5 Last action: 6 Last action: 10 Last action: 12

Last action: 14 Last action: 10 Last action: 12 Last action: 15 Last action: 14 Last action: 0, terminated

Figure 17. Example of an environment progression for the synthetic dataset. Generating the same edge twice (between key points 6 and 7),
although unintuitive, does not lead to a different final predicted graph.



