
Poisoned Network Dissection MILAN

images % std = 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

20 0.586 1.367 3.125 3.906 4.492 6.45 11.33 13.45 12.5 16.21
40 0.195 2.930 4.492 5.859 6.836 8.79 13.48 17.97 19.73 21.48
60 0.781 3.711 6.641 9.375 11.328 9.38 16.21 20.31 23.04 24.80
80 0.781 4.883 8.398 12.109 15.430 11.72 18.55 24.41 25.58 27.34
100 0.781 6.055 10.352 13.477 17.578 18.36 28.71 35.94 38.28 41.80

Table A.1: Percentage of units manipulated (higher means corruption technique has stronger effects) in VGG16-Places365
conv5 3 by gradual poisoning of the probing dataset with Gaussian random noise for Network Dissection.

A. Appendix

A.1. Noise corruption of probing dataset

This section extends our experiments with random noise data corruption to manipulate neuron explanations. In Section
A.1.1, we will study the effect of increasing the fraction of images poisoned with Gaussian random noise for an larger set of
standard deviations compared to Fig 2.b in the main text. In Sec A.1.2, we will analyze the effect of uniform and Bernoulli
bounded noise data corruption on neuron explanations.

A.1.1 Gradual data poisoning with Gaussian noise

Table A.1 shows the percentage of neurons manipulated by gradual poisoning of the probing dataset with Gaussian random
noise. We observe that even adding noise to 20% of probing dataset can manipulate around 5% neurons and 17% neurons in
the conv5 3 layer for Network Dissection and MILAN respectively.

A.1.2 Robustness analysis with bounded noise

In this section, we study the effect of data corruption with bounded noise on neuron explanations. We poison probing dataset
with uniform and Bernoulli random noise and obtain robustness estimates for VGG16-Places365. Fig A.1 visualizes images
in the probing dataset with added Gaussian, uniform, and Bernoulli noise. Even with noise standard deviation of 0.05, the
images are visually unchanged, making it hard to discern data corruption through manual examination.

Layer Type std = 0.01 0.02 0.03 0.04 0.05

conv3 3
G 0.0 0.0 0.0 0.390 0.781
U 0.0 0.0 0.0 0.0 0.0
B 0.0 0.0 0.0 1.172 1.953

conv4 3
G 0.195 1.171 3.125 4.687 6.0546
U 0.195 0.390 1.953 3.320 5.860
B 0.195 2.539 5.664 10.938 12.500

conv5 3
G 0.781 5.859 10.156 13.281 17.773
U 0.586 1.171 7.6171 13.867 21.679
B 0.390 12.500 21.680 36.328 41.601

Table A.2: Percentage of neurons manipulated (higher means corruption technique has stronger effects) in VGG16-Places365
by addition of Gaussian noise(G), Uniform noise(U), and Bernoulli noise(B) for Network Dissection. We do not observe any
successful manipulation in the layers conv1 1 and conv2 2. Highlighted values indicate maximum percentage of units
manipulated for a given layer and noise level. Bernoulli noise leads to highest number of manipulated neurons.



Network Dissection Table A.2 shows the percentage of neurons manipulated in VGG16-Places365 with bounded noise
data corruption. Bernoulli noise manipulates the highest percentage of neurons at different noise levels, with a maximum of
42% units in the conv5 3 layer.

MILAN Table A.3 shows the average F1-BERT score between clean and manipulated descriptions with bounded noise
data corruption. Similar to Network Dissection, we observe that Bernoulli noise results in maximum change in the neuron
descriptions, with a noise level of 0.05 reducing the average F1-BERT score to 0.73 in the conv5 3 layer.

(a) Gaussian noise

(b) Uniform noise

(c) Bernoulli noise

Figure A.1: Visualizing images poisoned with (a) Gaussian, (b) Uniform, and (c) Bernoulli noise. The first image of each
row visualizes the original image, followed poisoned images with a standard deviation from 0.01 to 0.05 in step size of 0.01.
The images are visually unchanged even with noise std=0.05 added to it.

Figure A.2: Visualizing images poisoned with designed data corruption for different values of corruption magnitude ϵ.



Noise

Layer Type 0.01 0.02 0.03 0.04 0.05

conv1 2
G 0.936± 0.172 0.892 ± 0.208 0.884± 0.222 0.870± 0.196 0.843 ± 0.203
U 0.967± 0.117 0.933± 0.152 0.900± 0.202 0.865± 0.230 0.876± 0.192
B 0.918 ± 0.189 0.896± 0.189 0.867 ± 0.206 0.843 ± 0.202 0.866± 0.213

conv2 2
G 0.918± 0.169 0.862± 0.202 0.856± 0.212 0.829± 0.214 0.848± 0.206
U 0.933± 0.155 0.910± 0.177 0.867± 0.208 0.853 ± 0.216 0.866± 0.200
B 0.914 ± 0.176 0.870 ± 0.201 0.849 ± 0.205 0.860± 0.204 0.836 ± 0.209

conv3 3
G 0.922± 0.181 0.886± 0.214 0.845± 0.226 0.813± 0.235 0.813± 0.238
U 0.937± 0.167 0.909± 0.192 0.889± 0.201 0.875± 0.213 0.842± 0.224
B 0.928 ± 0.167 0.852 ± 0.232 0.836 ± 0.222 0.793 ± 0.247 0.795 ± 0.252

conv4 3
G 0.896± 0.207 0.834± 0.238 0.778± 0.259 0.765± 0.259 0.735± 0.263
U 0.931± 0.174 0.881± 0.218 0.840± 0.238 0.820± 0.243 0.785± 0.259
B 0.897 ± 0.208 0.812 ± 0.249 0.797 ± 0.248 0.746 ± 0.264 0.733 ± 0.270

conv5 3
G 0.886± 0.223 0.832± 0.251 0.787± 0.269 0.767± 0.269 0.742± 0.279
U 0.935± 0.174 0.868± 0.237 0.842± 0.253 0.807± 0.261 0.801± 0.257
B 0.888 ± 0.224 0.823 ± 0.256 0.783 ± 0.275 0.758 ± 0.271 0.730 ± 0.283

Table A.3: Average F1-BERT score (lower score means our corruption technique has stronger effects) between clean and
manipulated descriptions in VGG16-Places365 with Gaussian noise(G), Uniform noise(U), and Bernoulli noise(B) data cor-
ruption for MILAN. Lower score indicates higher dissimilarity and more successful untargeted data corruption. Highlighted
values indicate minimum F1-BERT score for a given layer and noise level. Bernoulli noise leads to lowest F1-BERT score.

Clean description Manipulated description Score
“vehicle windows” “car windows” 0.942
“doors” “wall” 0.858
“the top of round objects” “circular shaped objects” 0.659
“containers” “circular object” 0.638
“doors” “buildings” 0.604
“signs and grids” “red colored object with text” 0.564
“blue areas in pictures” “blue skies” 0.552
“trees and flowers” “green colored objects” 0.422
“vertical lines” “fencing” 0.327

Table A.4: Sampled F1-BERT scores with untargeted data poisoning of MILAN

A.2. Designed corruption of probing dataset

This section extends our experiments with the designed data corruption to manipulate neuron explanations. We present our
results with untargeted data corruption without using ground-truth segmentation for Network Dissection in Sec A.2.1, discuss
challenges with targeted data corruption for MILAN in Sec A.2.2, provide an ablation study with a reduced form of Eq 9 in
untargeted setting in Sec A.2.3, and perform robustness analysis of adversarially-trained Resnet50 model in Sec A.2.4. Fig
A.2 visualizes poisoned images with our objective function, and Fig A.3 visualizes successful targeted data corruption for
Network Dissection on selected neuron units.

A.2.1 Untargeted data corruption on Network Dissection with Lc(x) from uncorrupted runs

In this section, we analyze untargeted data corruption for Network Dissection under the assumption that the ground-truth
segmentation information is not accessible, and hence we cannot obtain Lc(x) directly for data corruption with Eq 9. This
is a typical setting when Network Dissection (and other NEMs) are offered as a cloud service, with the user providing the



Figure A.3: Successful targeted data corruption with least corruption magnitude ϵ to manipulate unit 191 and unit 482. First
row in subfigure visualizes top activating images from Dprobe. Second row in each subfigure highlights pixels with value
greater than activation threshold Tneuron.

probing dataset and the per-pixel segmentation generation being handled securely in the cloud. We follow our formulation
in Sec 3.2 for obtaining Lc(x) from the general NEMs. The results are shown in Table A.5. We observe that the designed
data corruption is less effective than using the baseline segmentation data; however, we can achieve 45% success rate on
conv5 3 layer by poisoning less than 10% images. This shows that hiding the sim function is not a viable defense against
our designed data corruption method.

Layer ϵ = 2
255

4
255

6
255

conv4 3 5.41 8.11 13.51

conv5 3 5.13 23.08 46.15

Table A.5: Percentage of units manipulated (higher means our corruption technique has stronger effects) in VGG16-
Places365 by untargeted data corruption with Lc(x) obtained from uncorrupted runs for Network Dissection. We can obtain
45% manipulation success rate without using ground truth segmentation data.



A.2.2 Targeted data corruption on MILAN

The targeted data corruption aims to manipulate clean descriptions of MILAN to a target description by poisoning images
with designed perturbations. We consider a targeted data corruption successful if the F1-BERT score between manipulated
and target description is more significant than 0.642. We observe in our experiments that the targeted designed data corruption
on MILAN can manipulate a maximum of 40% neurons in VGG16-Places365. This can be explained by the fact that the
manipulated description is dependent on the number of poisoned images. MILAN obtains Lc(x) for computing corruption
using standard (non-corrupted) runs and requires hyperparameter for the number of poisoned images. We argue that the
manipulated description is dependent on the number of poisoned images, and increasing the number of poisoned images after
a threshold results affects the activations of unrelated concepts. Fig A.4 shows the targeted designed data corruption on Unit
191 to change its concept from “buses” to “beds” with the varying number of poisoned images. We observe that the F1-BERT
score between manipulated and target description decreases to a very low value if the number of corrupted images exceeds
400, implying that the manipulated description is very different from target description.

Figure A.4: F1-Bert score between clean and manipulated description with increasing number of poisoned images for Unit
191 conv5 3 of VGG16-Places365 in MILAN. Higher score means manipulated description and target description are similar,
with F1-BERT score being 1.0 if they match. The F1-BERT score increases and then decreases, implying that the manipulated
description is a function of the number of poisoned images.

A.2.3 Ablation: Untargeted data corruption

An alternative untargeted data corruption objective for neuron i with concept c∗i , and image xj ∈ Dprobe can be formulated
as

min
δj

actavgi,c∗i
(xj + δj)

s.t. ||δj ||∞ ≤ ϵ

xj + δj ∈ [0, 1]l

(1)

This formulation can be intuitively understood as trying to reduce the activations of pixels associated with the source category.
We refer to this formulation as U1 and our formulation in Eq 9 as U2. Table A.6 and Table A.7 compare the strength of
untargeted data corruption with U1 and U2 for Network Dissection and MILAN respectively. We observe that U2 consistently
outperforms U1, implying that using a random target label results in a stronger data corruption in an untargeted setting.

A.2.4 Robustness of Adversarially-trained models

In this section, we manipulate descriptions of adversarially-trained (ϵ= 2
255 ) Resnet50. The attack success rate (ASR) on

Network Dissection decreases to 41.2%, 76.0%, 88.0% for PGD ϵ= 2
255 , 4

255 , 6
255 in layer 3, from 75.3%, 98.6%, 98.6% of

the standard model respectively. This result suggests that adversarial training may only help to alleviate our proposed attacks
a bit since the ASR is still pretty high, demonstrating the need of a stronger defense.



Layer type ϵ = 2
255

4
255

6
255

conv1 2 U1 0.0 0.0 0.0
U2 47.73 52.27 54.55

conv2 2 U1 0.0 0.0 0.0
U2 4.08 22.45 38.78

conv3 3 U1 6.67 33.33 46.67
U2 34.88 58.14 67.44

conv4 3 U1 53.85 53.85 69.23
U2 57.45 95.74 100.0

conv5 3 U1 38.46 53.85 53.85
U2 70.59 96.08 96.08

Table A.6: Percentage of units manipulated (higher score means corruption technique has stronger effects) in VGG16-
Places365 by untargeted data corruption with objective function U1 and U2 for Network Dissection. Highlighted values
indicates stronger corruption between U1 and U2 for a given layer and corruption magnitude ϵ. Objective function U2 con-
sistently outperforms objective function U1 and achieves a higher manipulation success rate.

Layer type ϵ = 2
255 ϵ = 4

255 ϵ = 6
255

conv1 2 U1 0.91 ± 0.23 0.95 ± 0.17 0.92 ± 0.20
U2 0.89 ± 0.26 0.89 ± 0.26 0.86 ± 0.26

conv2 2 U1 0.95 ± 0.13 0.89 ± 0.18 0.88 ± 0.19
U2 0.94 ± 0.16 0.90 ± 0.19 0.84 ± 0.21

conv3 3 U1 0.86 ± 0.19 0.76 ± 0.24 0.71 ± 0.24
U2 0.79 ± 0.28 0.73 ± 0.26 0.66 ± 0.24

conv4 3 U1 0.73 ± 0.25 0.69 ± 0.26 0.68 ± 0.26
U2 0.63 ± 0.27 0.58 ± 0.24 0.51 ± 0.18

conv5 3 U1 0.75 ± 0.27 0.59 ± 0.27 0.53 ± 0.21
U2 0.54 ± 0.24 0.46 ± 0.16 0.47 ± 0.14

Table A.7: Average F1-BERT score (lower score means our corruption technique has stronger effects) in VGG16-Places365
by untargeted data manipulation with objective function U1 and U2 for MILAN. Highlighted values indicates strong cor-
ruption between U1 and U2 for a given layer and corruption magnitude ϵ. F1-BERT score between similar strings has its
maximum value 1.0, and lower F1-BERT score indicates higher dissimilarity and more successful untargeted data corruption.
Objective function U2 consistently outperforms objective function U1 and achieves a lower F1-Bert Score.


