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In this supplementary material, we provide the experi-
mental results for extending the FLIP framework to the 5-
shot setting in section 1. In section 2, we provide the results
of the statistical significance test. In section 3, we compare
the computational complexity and network parameters be-
tween all the methods in the FLIP framework. In section 4,
we present the results of evaluating on unseen spoof type.

1. Performance of FLIP in 5-shot setting

Following [4], we evaluate the FLIP framework under
the 5-shot setting, where 5 labeled samples from the target
domain are available during training to help bridge the do-
main gap. Tables 1, 2, and 3 report the cross-domain 0-shot
and 5-shot performance of Protocol 1, 2, and 3, respectively.

5-shot performance in Protocol 1: We observe that all
the 3 methods from the FLIP framework outperform the
baseline 5-shot performance. Notably, for the O protocol
(where the target samples have higher image resolution and
are 4 times larger than all the source domains combined),
we observe a large HTER gain of +3.85%. This demon-
strates that our method is able to effectively adapt to larger
unknown domains with very few samples (≈ 0.16% of
target domain samples in O).

5-shot performance in Protocol 2: Similar to Protocol 1,
we observe that our framework outperforms the baseline
5-shot methods by a huge margin of +2.43% in terms of
average HTER. Notably, for the C and S protocols (which
contain more than 1000 identities and have large illumina-
tion variations), we observe HTER gains of +3.87% and
+5.4% respectively. This demonstrates the effectiveness
of our method in adopting to unknown distributions con-
taining diverse samples, with just a few labeled samples
(0.08% for C and 0.1% for S).

5-shot performance in Protocol 3: To make a fair com-
parison, we implement the baseline ViTAF* method [4] and

extend it to Protocol 3 under the 5-shot setting. We observe
that the performance of the FLIP framework in the 5-shot
setting outperforms its 0-shot counterpart. Additionally, the
5-shot FLIP framework also outperforms 5-shot ViTAF* by
a margin of +2.26% (HTER). This corroborates our previ-
ous observations on our approach’s effectiveness in adapt-
ing to unknown domains with a few labeled samples.

2. Statistical Significance Test

Most prior works in cross-domain FAS simply report the
best result over a single trial. However, a fair comparison
of different methods is possible only when the statistical
variations are taken into account. Hence, we run each of
our experiments 5 times with different random seeds and
report the mean and standard deviation of all the metrics
in Tables 1, 2, and 3. For each of the three protocols, we
observe that the standard deviation of the proposed method
is low, indicating stable performance across multiple runs.

Furthermore, for Protocol 1 and Protocol 2, we perform
a one-sided pair-wise t-test to evaluate whether the pro-
posed method outperforms the baseline. Specifically, we
compare the proposed FLIP-MCL against ViT in the 0-shot
setting and against ViTAF* [4] in the 5-shot setting. The
null hypothesis is that there is no statistically significant dif-
ference between FLIP-MCL and the baseline, while the al-
ternate hypothesis is that FLIP-MCL is better. In Protocol
1, we find that the null hypothesis is rejected in three out
of four scenarios, failing only for M (for both the 0-shot
and 5-shot setting). For Protocol 2, the null hypothesis is
rejected for all three scenarios in the 0-shot setting. How-
ever, for the 5-shot setting, the null hypothesis is rejected
for two out of three scenarios failing only in W. These re-
sults clearly demonstrate that FLIP-MCL is superior to the
baseline methods and the better generalization performance
is not due to cherry picking of best trials.



Table 1. Extending evaluation of cross-domain performance in Protocol 1 from 0-shot to 5-shot. We evaluate between MSU-MFSD (M),
CASIA-MFSD (C), Replay Attack (I), and OULU-NPU (O). We run each experiment 5 times under different seeds and report the mean
HTER, AUC, and TPR@FPR=1%, along with their standard deviation (shown in brackets under the mean scores).

Method
OCI → M OMI → C OCM → I ICM → O Avg.

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER
FPR=1% FPR=1% FPR=1% FPR=1%

0-shot

MADDG (CVPR’ 19) [12] 17.69 88.06 – 24.50 84.51 – 22.19 84.99 – 27.98 80.02 – 23.09
MDDR (CVPR’ 20) [17] 17.02 90.10 – 19.68 87.43 – 20.87 86.72 – 25.02 81.47 – 20.64
NAS-FAS (TPAMI’ 20) [21] 16.85 90.42 – 15.21 92.64 – 11.63 96.98 – 13.16 94.18 – 14.21
RFMeta (AAAI’ 20) [13] 13.89 93.98 – 20.27 88.16 – 17.30 90.48 – 16.45 91.16 – 16.97
D2AM (AAAI’ 21) [1] 12.70 95.66 – 20.98 85.58 – 15.43 91.22 – 15.27 90.87 – 16.09
DRDG (IJCAI’ 21) [11] 12.43 95.81 – 19.05 88.79 – 15.56 91.79 – 15.63 91.75 – 15.66
Self-DA (AAAI’ 21) [19] 15.40 91.80 – 24.50 84.40 – 15.60 90.10 – 23.10 84.30 – 19.65
ANRL (ACM MM’ 21) [10] 10.83 96.75 – 17.85 89.26 – 16.03 91.04 – 15.67 91.90 – 15.09
FGHV (AAAI’ 21) [9] 9.17 96.92 – 12.47 93.47 – 16.29 90.11 – 13.58 93.55 – 12.87
SSDG-R (CVPR’ 20) [5] 7.38 97.17 – 10.44 95.94 – 11.71 96.59 – 15.61 91.54 – 11.28
SSAN-R (CVPR’ 22) [20] 6.67 98.75 – 10.00 96.67 – 8.88 96.79 – 13.72 93.63 – 9.80
PatchNet (CVPR’ 22) [15] 7.10 98.46 – 11.33 94.58 – 13.40 95.67 – 11.82 95.07 – 10.90
GDA (ECCV’ 22) [23] 9.20 98.00 – 12.20 93.00 – 10.00 96.00 – 14.40 92.60 – 11.45

DiVT-M (WACV’ 23) [8] 2.86 99.14 – 8.67 96.62 – 3.71 99.29 – 13.06 94.04 – 7.07
0-shot

ViT (ECCV’ 22) [4] 1.58 99.68 96.67 5.70 98.91 88.57 9.25 97.15 51.54 7.47 98.42 69.30 6.00

3.79 99.31 87.99 1.27 99.75 95.85 4.71 98.80 75.84 4.15 98.76 66.47 3.48
FLIP-V

(1.40) (0.31) (6.09) (0.85) (0.18) (5.53) (2.39) (0.85) (16.53) (0.56) (0.40) (14.97) (1.30)
5.27 98.41 79.33 0.44 99.98 99.86 2.94 99.42 84.62 3.61 99.15 84.76 3.06

FLIP-IT
(1.3) (0.60) (10.93) (0.27) (0.02) (0.29) (1.3) (0.43) (15.14) (0.53) (0.19) (7.62) (0.80)
4.95 98.11 74.67 0.54 99.98 100.00 4.25 99.07 84.62 2.31 99.63 92.28 3.01

0-shot

FLIP-MCL
(1.01) (0.50) (5.81) (0.22) (0.01) (0.00) (0.31) (0.17) (5.35) (0.46) (0.12) (3.37) (0.50)

ViT (ECCV’ 22) [4] 3.42 98.60 95.00 1.98 99.75 94.00 2.31 99.75 87.69 7.34 97.77 66.90 3.76
5-shot

ViTAF* (ECCV’ 22) [4] 2.92 99.62 91.66 1.40 99.92 98.57 1.64 99.64 91.53 5.39 98.67 76.05 3.31

1.89 99.67 94.66 1.01 99.84 96.56 1.68 99.47 75.53 2.27 99.62 93.23 1.72
FLIP-V

(0.63) (0.13) (3.39) (0.67) (0.14) (5.48) (0.69) (0.38) (22.07) (0.65) (0.15) (5.42) (0.66)
2.63 99.55 93.00 0.46 99.97 99.86 1.18 99.83 96.15 3.07 99.30 83.15 1.83

FLIP-IT
(0.78) (0.10) (3.71) (0.29) (0.02) (0.29) (0.26) (0.06) (1.95) (0.55) (0.06) (3.00) (0.47)
3.42 99.34 82.67 0.63 99.98 100.00 1.52 99.86 97.23 1.54 99.81 96.37 1.77

5-shot

FLIP-MCL
(0.16) (0.13) (7.35) (0.06) (0.01) (0.00) (0.09) (0.06) (1.04) (0.30) (0.06) (2.22) (0.15)

Table 2. Extending evaluation of cross-domain performance in Protocol 2 from 0-shot to 5-shot. We evaluate CASIA-SURF (S), CASIA-
CeFA (C), and WMCA (W). We run each experiment 5 times under different seeds and report the mean HTER, AUC, and TPR@FPR=1%,
along with their standard deviation (shown in brackets under the mean scores).

Method
CS → W SW → C CW → S Avg.

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER
FPR=1% FPR=1% FPR=1%

0-shot ViT (ECCV’ 22) [4] 7.98 97.97 73.61 11.13 95.46 47.59 13.35 94.13 49.97 10.82

6.13 97.84 50.26 10.89 95.82 53.93 12.48 94.43 53.00 9.83
FLIP-V

(2.24) (1.54) (25.05) (1.93) (1.27) (8.27) (1.26) (0.97) (6.27) (1.35)
4.89 98.65 59.14 10.04 96.48 59.4 15.68 91.83 43.27 10.2

FLIP-IT
(0.85) (0.48) (14.63) (0.46) (0.56) (5.48) (0.89) (0.75) (5.93) (0.55)
4.46 99.16 83.86 9.66 96.69 59.00 11.71 95.21 57.98 8.61

0-shot

FLIP-MCL
(1.10) (0.31) (6.62) (0.50) (0.87) (8.87) (0.45) (0.38) (2.18) (0.51)

ViT (ECCV’ 22) [4] 4.30 99.16 83.55 7.69 97.66 68.33 12.26 94.40 42.59 6.06
5-shot

ViTAF* (ECCV’ 22) [4] 2.91 99.71 92.65 6.00 98.55 78.56 11.60 95.03 60.12 5.12

0.69 99.96 99.42 3.68 99.38 85.87 7.44 97.62 76.11 2.95
FLIP-V

(0.28) (0.05) (0.52) (1.32) (0.44) (7.05) (0.36) (0.27) (0.59) (0.49)
0.80 99.96 98.67 3.19 99.44 88.80 7.63 97.42 71.6 2.90

FLIP-IT
(0.44) (0.05) (1.40) (0.16) (0.11) (4.44) (0.60) (0.38) (3.49) (0.30)
2.43 99.67 95.16 2.13 99.74 93.93 6.2 98.11 79.44 2.69

5-shot

FLIP-MCL
(0.78) (0.19) (2.4) (0.75) (0.13) (3.64) (0.53) (0.15) (1.29) (0.51)



Table 3. Extending evaluation of cross-domain performance in Protocol 3 from 0-shot to 5-shot. We evaluate all the 12 different combi-
nations between MSU-MFSD (M), CASIA-MFSD (C), Replay Attack (I), and OULU-NPU (O). We run each experiment 5 times under
different seeds and report the mean HTER along with their standard deviation (shown in brackets under the mean scores).

Method C → I C → M C → O I → C I → M I → O M → C M → I M → O O → C O → I O → M Avg.

0-shot

ADDA (CVPR’ 17) [14] 41.8 36.6 - 49.8 35.1 - 39.0 35.2 - - - - 39.6
DRCN (ECCV’ 16) [2] 44.4 27.6 - 48.9 42.0 - 28.9 36.8 - - - - 38.1
DupGAN (CVPR’ 18) [3] 42.4 33.4 - 46.5 36.2 - 27.1 35.4 - - - - 36.8
KSA (TIFS’ 18) [7] 39.3 15.1 - 12.3 33.3 - 9.1 34.9 - - - - 24.0
DR-UDA (TIFS’ 20) [18] 15.6 9.0 28.7 34.2 29.0 38.5 16.8 3.0 30.2 19.5 25.4 27.4 23.1
MDDR (CVPR’ 20) [17] 26.1 20.2 24.7 39.2 23.2 33.6 34.3 8.7 31.7 21.8 27.6 22.0 26.1
ADA (ICB’ 19) [16] 17.5 9.3 29.1 41.5 30.5 39.6 17.7 5.1 31.2 19.8 26.8 31.5 25.0
USDAN-Un (PR’ 21) [6] 16.0 9.2 - 30.2 25.8 - 13.3 3.4 - - - - 16.3
GDA (ECCV’ 22) [23] 15.10 5.8 - 29.7 20.8 - 12.2 2.5 - - - - 14.4
CDFTN-L (AAAI’ 23) [22] 1.7 8.1 29.9 11.9 9.6 29.9 8.8 1.3 25.6 19.1 5.8 6.3 13.2

15.08 13.73 12.34 4.30 9.68 7.87 0.56 3.96 4.79 2.09 5.01 6.00 7.12
FLIP-V

(4.60) (4.81) (4.41) (2.41) (1.62) (1.39) (0.46) (0.77) (0.98) (0.63) (1.41) (1.69) (2.10)
12.33 15.18 7.98 1.12 8.37 6.98 0.19 5.21 4.96 0.16 4.27 5.63 6.03

FLIP-IT
(2.24) (2.40) (2.73) (0.30) (2.95) (1.14) (0.26) (2.57) (0.75) (0.22) (1.53) (1.61) (1.55)
10.57 7.15 3.91 0.68 7.22 4.22 0.19 5.88 3.95 0.19 5.69 8.40 4.84

0-shot

FLIP-MCL
(2.94) (1.4) (0.47) (0.05) (2.15) (0.37) (0.20) (1.38) (0.42) (0.26) (1.42) (1.09) (1.01)

4.98 4.38 10.85 2.55 5.08 8.63 1.59 1.79 7.92 1.65 3.4 4.4 4.77
ViTAF*

(0.66) (0.80) (1.31) (0.34) (0.95) (0.97) (0.20) (0.13) (0.71) (0.36) (0.71) (0.73) (0.66)

3.37 2.27 2.96 0.79 2.37 3.75 0.42 2.38 2.76 0.35 1.62 2.10 2.10
FLIP-V

(1.23) (1.19) (0.68) (0.26) (1.26) (0.92) (0.30) (0.34) (0.47) (0.29) (0.34) (0.68) (0.66)
4.11 5.22 4.20 0.42 2.22 3.20 0.40 2.31 3.21 0.16 2.45 3.78 2.64

FLIP-IT
(0.74) (0.57) (0.59) (0.25) (0.79) (0.33) (0.33) (0.65) (0.46) (0.22) (0.55) (0.73) (0.50)
4.18 5.27 2.48 0.65 3.68 2.56 0.19 1.74 2.43 0.23 2.58 4.10 2.51

5-shot

FLIP-MCL
(0.60) (0.53) (0.53) (0.06) (0.53) (0.42) (0.20) (0.29) (0.26) (0.23) (0.59) (1.25) (0.45)

Table 4. Computational complexity analysis for all the methods in the FLIP framework compared with the baseline methods.

Method
Training Inference Inference TimeImage Encoder Text Encoder + Proj

Parameters FLOPs Parameters FLOPs Parameters FLOPs (seconds/frame)

ViT (ECCV’ 22) 86.19M 17.58G - - 86.19M 17.58G 0.007
ViTAF* (ECCV’ 22) 92.02M 18.68G - - 92.02M 18.68G 0.020
FLIP-V 86.58M 17.58G - - 86.58M 17.58G 0.013
FLIP-IT 86.19M 17.58G 63.11M 35.81G 86.19M 17.58G 0.010
FLIP-MCL 86.19M 52.74G 83.05M 35.86G 86.19M 17.58G 0.010

3. Computational Complexity

We present the model size, training, and inference
time computational complexity (computed on an NVIDIA
Quadro RTX 6000) in Table 4. Kindly note that our im-
age encoder (FLIP-V) is similar to [4] except that it is pre-
trained using CLIP. However, FLIP-IT and FLIP-MCL re-
quire an additional text encoder during training. Further-
more, FLIP-MCL requires additional projection layers for
the contrastive loss (LsimCLR). Thus, FLIP-IT and FLIP-
MCL have some auxiliary parameters, only during train-
ing. Moreover, since FLIP-MCL requires three forward
passes through the image encoder (original + 2 transformed
views), it involves more computations. Once the training is
complete, the embeddings for the text prompts can be pre-
computed and stored. Hence, all the auxiliary parameters

(text encoder + proj) can be discarded and only the image
encoder is required for inference. Therefore, our inference
time is similar to the baseline method [4], while our ap-
proach significantly improves the generalization to unseen
domains.

4. Robustness to Unseen Spoof Type
To understand the robustness of the proposed FLIP-MCL

method to unseen spoof types, we design an experiment
to evaluate its performance, where the training and testing
spoof types are completely different. We present the re-
sults in Table 5. Each dataset in Protocol 1 (M, C, I, O)
contains real, print attack, and replay attack samples. We
aggregate the samples of real, print, and replay from all 4
datasets and split each group into a train-test split of 80%-
20%. For the Replay experiment, we train only on real and



Table 5. HTER performance on unseen spoof type at test time. Re-
play denotes training on real+print samples and testing on unseen
replay samples. Print denotes training on real+replay samples and
testing on unseen print samples.

Method Replay Print

ViT (ECCV’ 22) [4] 4.69 10.36
FLIP-MCL 1.07 1.98

print samples and test on unseen replay samples. Similarly,
we perform the Print experiment by training only on real
and replay samples and testing on unseen print samples.
We observe that for both the unseen testing scenarios (Re-
play & Print) the proposed FLIP-MCL method comfortably
outperforms the baseline ViT thus demonstrating its gener-
alizability. This validates the idea that aligning images to
text descriptions can also handle unseen spoof types.
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