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S1. Additional Qualitative results
We demonstrated and overviewed qualitative results of

inverted spatiotemporal models with LEAPS in Section 4.2.
Supplementary to Figure 4, we provide additional results
in order to visualize the features synthesized from differ-
ent encoders when using the same action labels and stim-
uli. As shown in Figures S1 to S4 LEAPS can synthesize
coherent visual features and effectively invert learned rep-
resentations, independently of the spatiotemporal architec-
ture used. Similar to the synthesized videos in Figure 4,
for actions that are best described by the objects used e.g.
juggling balls, dribbling basketball, and playing trumpet,
all models optimize the input video to represent both class-
relevant objects as well as actor-object interaction. Impor-
tantly, the synthesized videos show that video models learn
motions with respect to both objects as well as actors. For
the synthesized videos of juggling balls in Figure S1, the
balls are primarily shown to be thrown upwards. In contrast,
for the dribbling basketball videos in Figure S3, basketballs
are bouncing on the side of the actor. In addition, evidence
of LEAPS’s ability to synthesize class-relevant features can
be seen in Figure S4 where for the playing trumpet stimu-
lus used, the better half of the trumpet is occluded. In ac-
tions that do not include or cannot be associated with spe-
cific objects; e.g. baby crawling in Figure S2, the synthe-
sized videos primarily focus on the actor. This demonstrates
that learned class-specific concepts of video models can be
based on either objects, the actor’s appearance and motions,
or both, depending on the action performed.

Based on the videos from inverted models presented in
Figures S1 to S4 there are no significant differences as to the
objects and actors that are synthesized. However, the level
of detail in the synthesized videos is shown to correlate with
the model complexity. Specifically for baby crawling and
playing trumpet synthesized videos from inverted models of
increased capacities; e.g. X3D, Swin, and MViTv2 contain
more visually distinct concepts than those of smaller archi-
tectures; e.g. 3D/(2+1)D Resnet-50. The effect is in line
with the resulting synthesized videos from inverted models
in Figure 6. Overall, LEAPS can invert models of varying
complexities while also visualizing feature details based on
the model’s feature space capacity.

Model λ1 λL r L
3D R50 1.0 0.3 7.5e−3 7.892
(2+1)D R50 0.75 0.1 5e−3 6.421
CSN R50 1.0 0.2 5e−3 6.603
X3DXS 1.0 0.2 1e−3 5.175
X3DS 1.0 0.1 1e−3 5.538
X3DM 0.75 0.1 1e−3 6.387
X3DL 0.75 0.1 1e−3 7.190
TimeSformer 1.0 0.2 2.5e−3 5.629
Video Swin-T 0.75 0.2 1e−3 6.527
Video Swin-S 0.75 0.1 1e−3 7.508
Video Swin-B 0.625 0.1 1e−3 8.841
MViTv2-S 0.75 0.1 2.5e−3 7.356
MViTv2-B 0.75 0.1 1e−3 8.195
rev-MViT-B 0.625 0.1 5e−3 7.227
UniFormerv2-B 1.0 0.2 2.5e−3 6.053
UniFormerv2-L 1.0 0.1 1e−3 7.415

Table S1: LEAPS optimization hyperparameters based
on grid search. We additionally report the average loss on
synthesized videos from the Kinetics validation set.

S2. Hyperparameter settings

As described in Section 4.1, we discover the opti-
mal λ and r hyperparameters for each model through
grid search. To limit the search space and computa-
tional overhead of hyperparameter tuning, we define λ1 ∈
{0.5, 0.625, 0.75, 0.875, 1.0}, λL∈{0.1, 0.2, 0.3, 0.4, 0.5},
r ∈ {1e−3, 2.5e−3, 5e−3, 7.5e−3, 1e−2}, where λ1 is the
priming weight for the first layer of the network, λL is the
priming weight for the final layer of the network. Based on
λ1 and λL, we use a linear (decreasing) function for the re-
maining λ ∈ {2, ..., L−1} layer priming weights. Table S1
provides a full list of the hyperparameters discovered and
used for inverting each model. We note that the loss shows
to increase in larger models due to the number of layers used
for priming.
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Figure S1: Qualitative examples of synthesized features with LEAPS for action label juggling balls.
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Figure S1: Qualitative examples of synthesized features with LEAPS for action label juggling balls (continued).
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Figure S2: Qualitative examples of synthesized features with LEAPS for action label baby crawling.
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Figure S2: Qualitative examples of synthesized features with LEAPS for action label baby crawling (continued).



st
im

ul
us

vi
de

o
3D

R
50

[3
]

(2
+1

)D
R

50
[1

3]
C

SN
R

50
[1

2]
X

3D
X

S
[2

]
X

3D
S

[2
]

X
3D

M
[2

]
X

3D
L

[2
]

Ti
m

eS
fo

rm
er

[1
]

Figure S3: Qualitative examples of synthesized features with LEAPS for action label dribbling basketball.
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Figure S3: Qualitative examples of synthesized features with LEAPS for action label dribbling basketball (continued).
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Figure S4: Qualitative examples of synthesized features with LEAPS for action label playing trumpet.
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Figure S4: Qualitative examples of synthesized features with LEAPS for action label playing trumpet (continued).
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Figure S5: Projection of X3DM’s final encoder layer em-
beddings onto two principal components for Kinetic’s class
tai chi. Embeddings of videos from Kinetics are in blue,
from LEAPS w/o R

feat
in orange, and from LEAPS in red.

S3. Embedding space visualizations
LEAPS aims to synthesize visually coherent represen-

tations of inverted models. To better understand the
relationship between the inverted model’s features and
real videos from the Kinetics-400 train set, we provide
UMAP [10] visualizations of their feature embeddings for
action tai chi. We use the spatiotemporally averaged fea-
ture vectors from the final convolution block in X3DM
(s5.pathway0 res6.branch2.c).

As illustrated from the results in Figure S5, inverted
model embeddings are within the distribution of embed-
dings from Kinetics videos. While this is true for both
embeddings from LEAPS synthesized videos as well as
LEAPS synthesized videos without feature diversity regu-
larization, LEAPS videos show a greater level of variation
without being as closely concentrated as the embeddings of
LEAPS w/o R

feat
.

S4. Priming layers
We further ablate over the number of layers used by the

priming loss L
prim

. We select embeddings from the first

20%, 40%, 60%, and 80% of the total network layers for
our priming loss. Given our proposed LEAPS uses embed-
dings from all network layers; i.e. Λ = {1, ..., L}, each set-
ting in turn uses Λ20 = {1, ..., ⌊L

5 ⌋}, Λ40 = {1, ..., 2L
5 ⌋},

Λ60 = {1, ..., ⌊ 3L
5 ⌋}, and Λ80 = {1, ..., ⌊ 4L

5 ⌋}, where ⌊·⌋
denotes the floor function. As shown in Table S2, for both
3D R50 and X3DM, priming layer reductions also corre-
spond to large decreases in top-1 accuracies and inception
scores. The degradation in accuracy and IS is observed for

Priming top-1 (%) Inception Score (IS)
layers (%) model ver. model verifier
3D R50
20 19.0 4.1 1.3 ± 0.2 1.1 ± 0.1
40 23.4 9.5 1.8 ± 0.4 1.4 ± 0.4
60 41.8 23.4 2.5 ± 0.6 1.6 ± 0.5
80 69.3 54.6 4.2 ± 1.3 2.0 ± 0.4
100 (LEAPS) 86.7 68.5 9.0 ± 1.0 5.7 ± 0.7
X3DM

20 15.8 3.9 1.1 ± 0.1 1.0
40 18.3 5.4 1.4 ± 0.4 1.0
60 32.6 18.7 2.1 ± 0.8 1.2 ± 0.2
80 55.0 37.2 3.8 ± 0.7 2.1 ± 0.6
100 (LEAPS) 90.3 82.5 11.4 ± 0.9 8.0 ± 1.4

Table S2: Ablation on the percentage of model’s layers
used for priming. The best results per metric are in bold.
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Figure S6: Top-1 inverted model accuracy (%) with
priming over stimuli videos. The area between the lower
and upper class-accuracy bounds achieved by videos from
LEAPS is shown in gray.

both the inverted models as well as the verifier.

S5. Multi-stimuli priming
Our proposed video model inversion method is based on

the approximation of embeddings that are relevant to spe-
cific actions. LEAPS uses the embeddings from a single
priming example as stimulus. As an alternative, one may
use additional stimuli videos to recall the learned precon-
scious of models associated with a class. We show in Fig-
ure S6 the top-1 accuracies achieved by 3D R50 and X3DM
when priming is performed with multiple stimuli instead of
using LEAPS regularizers. As observed, the use of temporal
coherence and feature diversity regularizers terms can per-
form favorably over internal representations from a small
number of multiple stimuli. However, increasing the num-
ber of stimuli used show comparable performance to that
achieved by LEAPS, thus advocating for an alternative to
regularizers when access to more data is available.



Figure S7: Single and multi stimuli priming without R
feat

for class making pizza. The leftmost and center columns use a

single but different stimulus video for model inversion. The right column uses the mean embeddings over 10 (top) and 100
(bottom) stimuli videos of the corresponding class. MViTv2-B features are inverted without a verifier network.

S6. Additional Discussions

Limitations. LEAPS is a general model-independent
method for visualizing learned concepts of video models.
We have demonstrated its effectiveness in inverting multiple
architectures. As the synthesized visual features are not in-
fluenced by training data, with only a single stimulus video
used to prime the network, we include a feature diversity
regularizer. The regularizer uses the batch norm statistics
as in [14], to approximate realistic features given a verifier
network. The verifier is limited to architectures with batch
norm layers and restricts the use of attention-based models.

We consider two approaches to mitigate this. The first
approach is to remove the diversity regularized altogether.
This evidently results in accuracy and IS decrease as shown
in Table 3 with LEAPS L

prim
+ R

coh
and LEAPS (full). Qual-

itative examples are shown in the left and middle columns
of Figure S7. The second approach is the use of multi-
stimuli priming, which shows promise as an alternative in
settings where additional data is available, as discussed in
Section S5. We also provide examples of the effect of multi-
stimuli priming at the rightmost column of Figure S7.
Applicability to other tasks. Our focus has been on the
inversion of video models and the visualization of their em-
beddings. However, the method can be further extended to
subsequent downstream tasks in the video domain including
knowledge transfer [14], domain adaptation [7], counterfac-
tual explanations [11] , and inversion attacks [4]. Such tasks
have received little attention for video inputs and thus we
believe that LEAPS can enable subsequent research efforts.
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