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A. Ablation Study

Figure 1. (a) is the original image. (b) is the quantised image with
Palette Branch. (c) is the quantised image using a set of centroids
instead of Palette Branch.

As shown in Table 1, we ablate the important elements in
our CQFormer, using Tiny200 [8] classification dataset under
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1-bit colour quantisation. We investigate the effectiveness
of the temperature parameter by setting τ = 1.0, perceptual
structure loss by setting any terms of α, β and γ as 0 and
Palette Branch by replacing it with a set of centroids in
colour space. As shown in Table 2, we also investigate the
robustness of CQFormer by adding colour jitter and Gaussian
blur using CIFAR10 [7] classification dataset under different
colour quantisation levels from 1-bit to 4-bit.
Influence of temperature parameter: Without the tem-
perature parameter, a severe accuracy drop (-38.8%) has
occurred, which shows that the temperature parameter in
our CQFormer can further approximate the One-hot(M(x))
using mτ (x) during training stage to boost classification
accuracy.
Influence of perceptual structure loss: With the RColour,
RDiversity and LPerceptual, our CQFormer improve the top-1
accuracy by 1.2%, 1.4% and 0.5%, respectively. When we re-
move all of them, a considerable accuracy drop of -7.8% has
occurred. It demonstrates that the perceptual structure loss
contributes to better machine accuracy besides maintaining
perceptual similarity.
Influence of Palette Branch: If we remove Palette Branch
and make the CQFormer just learn a set of centroids in RGB
colour space, the accuracy is 30.4%, resulting in a severe
drop of 14.7%. As shown in Fig. 1, it would make all the
images have the same colour palette rather than the same
amount of colours, resulting in a loss of perceptual similarity,
e.g. the blue sky in Col.(c) is represented as light yellow.
Therefore, our Palette Branch ensures that reference palette
queries are sent to interact with the image and creates the
colour palette using both machine preference and image
perception features, which maintains the colour specificity
of each image.
Robustness of CQFormer: We add a colour jitter and
Gaussian blur to the colour-quantised image. Results are
shown in Table. 2. For example, on the CIFAR10 clas-
sification dataset, we achieve 79.3%, 81.6%, 83.4%, and
84.6% top-1 accuracy with a colour jitter from 1-bit to 4-bit



Table 1. Ablation study results under 1-bit colour quantisation, Tiny200 [8] dataset, Renset18 [4] classifier.

τ RColour RDiversity LPerceptual Palette Branch Accuracy

" " " " " 45.1
% " " " " 6.9
" % " " " 43.9
" " % " " 43.7
" " " % " 44.6
" % % % " 37.3
" " " " % 30.4

Table 2. Ablation study results of robustness under under different colour quantisation levels from 1-bit to 4-bit, CIFAR10 [7] dataset,
Renset18 [4] classifier.

1 bit 2 bit 3 bit 4 bit
CQFormer 80.7 83.1 83.8 85.2
CQFormer (with colour jitter) 79.3 81.6 83.4 84.6
CQFormer(with Gaussian blur ) 80.6 81.7 81.9 83.6

colour quantisation. The colour jitter causes a little drop of
1.4%, 1.5%, 0.4%, and 0.6%, respectively. Therefore, our
CQFormer is robust enough to overcome different noises.

B. Object Detection with other detector
To evaluate our CQFormer’s generalisation on another

object detector, we use the popular object detector Faster-
RCNN [10] for evaluation. We jointly train our CQFormer
with Faster-RCNN for 12 epochs on 4 Tesla V100 GPUs.
We adopt the SGD optimiser with an initial learning rate
0.01, momentum 0.9 and weight decay 0.0001, learning rate
decay to one-tenth at 8 and 11 epochs. The dataset and
other training settings are the same as Sparse-RCNN [12]
experiments in Sec. 4.2.

C. The Reason of Choosing Nafaanra for
Colour Evolution Experiments

Colour naming data for Nafaanra [13] were initially col-
lected in 1978 in Banda Ahenkro, as part of the WCS [1],
which is a 3-term system, with terms for light (‘fiNge’), dark
(‘wOO’), and warm or red-like (‘nyiE’). In 2018, 40 years af-
ter the original WCS data collection, Nafaanra colour naming
data were collected again in the same town. As technology
and lifestyle changed in the community, the Nafaanra colour
naming system changed substantially between 1978 and
2018, becoming more semantically fine-grained by adding
new colour terms and adjusting the extension of previously
existing terms [13]. Therefore, the Nafaanra language is an
excellent example for comparing the evolution trajectory of
human language using the machine.

D. The Relationship between the IB Color Nam-
ing Model and CQFormer

Fig. 2(a) is the information bottleneck (IB) color naming
model proposed by [14]. A straightforward communication
scenario, which can be derived from Shannon’s communica-
tion model [11], serves as the foundation for this theoretical
framework.

Fig. 2(b) is our colour quantisation model. The motiva-
tion of our colour quantisation model architecture is driven
by the IB color naming model [14]. As illustrated in (b), the
speaker represents the CQFormer, and the listener represents
the classifier. We focus on the case where a colour quantiser
(CQFormer) and a classifier communicate about colours.
The CQFormer has a ”mental” representation, i.e. a full-
colour image x associated with a prior label y drawn from
a prior distribution, and communicates this representation
by encoding it into a colour-quantised image x̄ according
to the perceptual similarity. The classifier receives x̄ and
attempts to infer from it the full-colour image’s label y by
predicting the label ŷ and constructing another distribution
that approximates y.

There exists a problem that both the speaker and listener
in Fig. 2 (a) have a knowledge of colour naming/recognition
at the same time. In contrast, the untrained CQFormer and
classifier lack knowledge of colour quantisation and im-
age classification. Therefore, we jointly train both the CQ-
Former and classifier simultaneously to add prior knowledge
of colour quantisation and image classification under a spe-
cific bit of colour. Finally, similar to the theoretical limit of
semantic efficiency in [14], we obtain optimal image classi-
fication accuracy under the specific bit of colour.



Table 3. Object detection results on MS COCO dataset [9] with Faster-RCNN [10] detector, here we report the average precision (AP) value.

Method 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit Full Colour (24-bit)
Upper bound - - - - - - 37.2
Median Cut (w/o D) [5] 6.5 9.7 11.4 14.0 16.8 18.1 -
Median Cut (w D) [2] 7.3 8.8 11.2 13.4 14.8 15.6 -
OCTree [3] 8.7 9.0 9.8 10.9 13.4 14.5 -
CQFormer 8.9 11.2 12.8 14.5 16.6 19.4 -

Figure 2. (a) is the IB color naming model proposed by [14].(b) is our colour quantisation model.

Figure 3. 8-colour quantised images by CQFomer.

E. Visualisation
As shown in Fig. 4 and Fig. 3, our CQFormer effectively

preserves more perceptual structure and similarity. For in-
stance, aeroplane wings, textures of architecture and vehicle
windows.
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Figure 4. Visualisation of 1-bit and 2-bit colour quantisation by ColorCNN [6] and CQformer.


