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A. Introduction

This document contains additional results and analyses
that were excluded from the main document due to space
constraints. We examine the effectiveness of VETO +
MEET over other MEET debiased models and perform a
comparison of the computational cost advantages achieved
by VETO when contrasted with its baseline methods.

B. Additional Network Details

Feature extractor. The extracted feature maps r from
the ResNeXt-101-FPN [27, 34, 54] backbone consist of 4
spatial scales: (1/4,1/8,1/16,1/32) — (r% r! r? r3);
the extracted geometric features g from ResNet-50 [24, 53]
consist of a single spatial scale: (1/8) — (g). Each bound-
ing box b; is mapped to the corresponding scale to extract
entity RGB features from r and to the fixed scale to extract
the entity geometric features from g. The extracted features
from both the modalities are ROIAligned [52] and average
pooled to obtain the visual features v and depth features d.

Relation network. The feature projection dimensions
of the local-level entity visual and depth features v and d
are chosen as p” = 64 and p? = 512, respectively. The
transformer input consists of 19 tokens, which comprise 16
local-level entity tokens, 2 tokens from location features 1
and semantic features w, and a learnable (class) token. For
the transformer feed-forward network, we use a hidden di-
mensionality that is double the token dimensionality, with a
dropout of 0.35. We use the predicate class split with G = 5
groups [6] for MEET training.

C. Additional Experimental Results

C.1. MEET analysis

In this section, we compare VETO + MEET to its base-
lines to analyse the effectiveness of MEET training.

Fig. 8 reveals that the combination of VETO with MEET
has the highest gain in terms of both R@k and mR @k after
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Figure 8. Effect of debiasing with MEET on Recall (R)
and mean Recall (mR). R@k and mR @k improvement/drop of
MEET-debiased models relative to their vanilla versions.

MEET debiasing, followed by the combination of MEET
with Motifs [43] and SHA [6]. It can also be seen that for
VCTree [28] and VTransE [45], there is a recall drop af-
ter debiasing. The pattern reveals that the strength of the
underlying relation network has a crucial influence on the
efficacy of MEET. We further examine the predicate class-
level improvement of VETO + MEET over its strong coun-
terparts Motifs + MEET in Fig. 9 and SHA + MEET in
Fig. 10. Fig. 11 shows that debiasing VETO using MEET
notably improves prediction. The improvement pattern sets
VETO + MEET apart from debiased models like SHA +
GCL [6], which exhibits a significant drop in head class per-
formance. In contrast, VETO + MEET enhances prediction
across head, body, and tail classes. For all the comparisons,
the major boost for VETO + MEET comes from the body
and tail classes. However, even a slight improvement in
head classes is remarkable because those predicate classes
are present in the majority of the samples. Thus, VETO +
MEET shows a consistent performance gain over its base-
lines across the entire predicate class frequency distribution.
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Figure 9. R@100 improvement on PredCls for VETO + MEET over Motifs + MEET. The predicates are sorted based on their frequency
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[52] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask R-CNN.

itive training and inference times, making it a more efficient

lower GPU memory consumption while exhibiting compet-
choice overall.

possesses significantly fewer total parameters, leading to
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Figure 10. R@100 improvement on PredCls for VETO + MEET over SHA + MEET. The predicates are sorted based on their frequency

in descending order.
inference time per image in milliseconds

Tab. 7 compares the training time in seconds/iteration

(Sec./tr),
total parameters in millions (Train. par. (M) and Total par.

(M)), and maximum memory consumption in Gigabytes
(GB) for batch size 8. The results clearly show that VETO

(Inf.Time (ms)/Img), number of trainable parameters and
outperforms the comparison models in several aspects.

C.2. Computation cost comparisons
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Figure 11. R@100 improvement of VETO + MEET over VETO. The predicates are sorted based on their frequency in descending order.

and wearing 2
>
on
on

(G D 8 9!-

1

with  hanging from

hanging from on

Figure 12. Qualitative example. Head and tail relations are highlighted in blue and yellow, respectively. Greyed out relations and arrows
denote missed predictions. (/) Illustrative VG sample with ground-truth bounding boxes and labels; (2) SGG ground-truth; (3) VETO +
MEET predicts all the head and tail classes for this example; (4) Motifs + MEET misses head class with and tail class and; (5) SHA +
MEET also misses head class with and tail classes and, hanging from.
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