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In the supplementary material, we first introduce more
details about the network architecture of the three baselines
including memory frame encoder (i.e., Mk, Mv as output),
query frame encoder (i.e., Qk, Qv as output) and the de-
coder (i.e., Decoder in Figure 1). Then, we elaborate the
implementation details of the three baselines including the
similarity function and the training strategies (as a supple-
ment to Section 4.1 in main paper). Finally, we showcase
more qualitative results of our TMRN (as a supplement to
Section 4.2).

1. More Details on Network Architecture
In this section, we provide more details about the net-

work architecture of the three baselines (i.e., STM [9],
XMem [2] and STCN [3]), including memory frame en-
coder (i.e., Mk, Mv as output), query frame encoder (i.e.,
Qk, Qv as output) and the decoder (i.e., Decoder in Fig-
ure 1).

For STM, we prepend the TMRN to improve the mem-
ory reading module (MRM). The query encoder takes the
query frame as the input, and outputs two feature map-
s including key Qk and value Qv through two paral-
lel convolutional layers attached to the backbone network
ResNet50 [4]. The structure of the memory encoder is the
same as the query encoder except that the input is expand-
ed to four channels including the RGB frame and the seg-
mented mask, and the output is the memory key Mk and
value Mv from res4 features with stride 16. The decoder
takes the concatenation of retrieved memory value v (Sec-
tion 3.2) and the query value Qv and compresses them into
256 channels through a convolutional layer and the residu-
al block, and then a series of refinement modules gradually
upsample the compressed features by a factor of two at a
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Figure 1. Illustration of the proposed TMRN. TMRN is mainly
composed of a spatial alignment module and a temporal aggrega-
tion module to equip with the trajectory information, and enables
each query pixel to independently retrieve the pixels in each mem-
ory frame to seek the location of the counterpart trajectory, and
obtain spatially aligned memory pixel features. Then the resultant
aligned memory pixels are pooled through the temporal aggrega-
tion module to reason about inter-frame connections.

time to attain the final prediction.
For STCN, we develop the TMRN to improve the mem-

ory reading module (MRM). Unlike STM, a key encoder
(image as input, and output memory key Mk, query key
Qk) and a value encoder (image and mask as input, and
output memory value Mv) are constructed with ResNet50
and ResNet18 respectively. Note that the query value Qv

is obtained by applying another convolution layer after the
key encoder which takes the current frame as input. The de-
coder structure stays close to that of the STM, that is, fea-
tures are processed and upsampled at a scale of two gradu-
ally with higher-resolution features incorporated credited to
skip-connections. Then the final layer of the decoder pro-
duces a stride 4 mask which is bilinearly upsampled to the
original resolution.

For XMem, we integrate TMRN into working memory
and disable long-term memory. Disabling long-term memo-
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ry can make the model work better on DAVIS and Youtube-
VOS variant benchmarks, as indicated in [2]. Similar to
STCN, the key encoder (memory key Mk, query key Qk) is
on top of ResNet50 and value encoder (memory value Mv

as output) is based on ResNet18 respectively. And the query
value Qv is obtained by applying another convolution lay-
er after the key encoder. The decoder concatenates hidden
representation from sensory memory and retrieved features.
Then these resultant features are iteratively upsampled by
2× at a time until stride 4 and projected to a single channel
logit via a 3×3 convolution for segmentation.

2. More on Implementation Details

In this section, we elaborate the implementation details
of the three baselines (i.e., STM [9], XMem [2] and STC-
N [3]) including the similarity function (Section 3.2) and
the training strategies. Note that all the rest of the network
architecture (i.e., except TMRN) including memory frame
encoder and query frame encoder, and training settings are
exactly the same as the baselines. Generally, all baselines
undergo two-stage training, including static image pretrain-
ing [1, 6, 11, 12, 14] and video data main training [10, 13].
For STM, we take the dot product as the similarity function,
and crop 384×384 for training, and minimize the cross-
entropy loss using the Adam [5] optimizer with an initial
learning rate of 1e-5. And for STCN, we utilize the nega-
tive squared Euclidean distance as similarity function. Dur-
ing main training, three frames are randomly sampled from
a video, and the sampling interval gradually increases from
5 to 25 as a curriculum leaning schedule and anneals back
to 5 towards the end of training. We use a batch size of 16
during pretraining and a batch size of 8 during main train-
ing with the bootstrapped cross entropy. For XMem, we
devise anisotropic L2 by introducing two scaling terms as
similarity function. As implemented in XMem, we sam-
ple sequences of length eight, and a maximum of 3 past
frames are randomly selected to be the working memory
for reducing training time. For optimization, we adopt the
AdamW [8] optimizer with the learning rate of 1e-5 based
on the bootstrapped cross-entropy loss combined with the
dice loss. During inference, we construct memory frames
with a sampling interval of 5, and employ the soft aggrega-
tion operation when multiple target objects exist in a video.

3. More Qualitative Results

Figure 2 showcases qualitative comparison between
STCN w/ TMRN and other competitive methods including
STM [9], GSFM [7], and STCN [3] on YouTube-VOS [13].
We can vividly observe that GSFM and STCN fail to pre-
dict target objects when multiple similar objects zebra have
appeared (i.e., 1ab5f4bbc5 in Figure 2), while our TMRN
can accurately discriminate the distractors. This is in line

with the design idea of agent-level correlation, that is, al-
leviating false matches caused by direct pixel-level correla-
tion and pursuing that true pixel-level correlations between
query-memory frame enjoy higher weights. Besides, com-
pared to the baseline STCN, we achieve better consistent
segmentation results for object skateboard even with dras-
tic appearance variations caused by the movement of ob-
jects and cameras (i.e., 4bef684040 in Figure 2), credited to
modeling the temporal trajectory in a data-driven manner.
Please refer to attached qualitative for TMRN.mp4 for the
qualitative video.
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Figure 2. More qualitative results on YouTube-VOS 2019 validation set. We mark significant improvements from STM [9], GSFM [7] and
STCN [3] using red boxes.
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