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Table 1: Supplementary Material Overview

A. Implementation Details

A.1. Training

We pre-compute the teacher features of all images and
texts using CLIP-ViT-L/14. We apply the basic data augmen-
tations (only random cropping, flipping and data whitening)
to the input images when computing the student features.
We empirically find out more advanced data augmentations
(such as “rand-m9-n3-mstd0.5”) harm the distillation perfor-
mance. We argue that the advanced data augmentations for
the student model’s input images enlarge the discrepancy of
the student feature and the fixed pre-extracted teacher fea-
ture, which lead to the poor performance in vision-language
knowledge distillation. We train all models for 100 epochs.
During the training, we use the Adam optimizer [16] with de-
coupled weight decay regularization [22]. We set the initial
learning rate as 8× 10−4 and weight decay 0.05. We warm
up the training for 4 epochs and then we decay the learning
rate using a cosine schedule [21]. We remove the weight de-
cay of the weights that are the gains or biases. For our model
Distill-ViT-B/32, we optimize with the batch size 12288 for
images and texts. For Distill-UniCL*, we adopt 8192 as
the batch size. We grid search for the best hyperparameters
µvl, µp-vl and µudist when performing ablation studies on
losses in Sec 4.5 (main paper). We finally set µvl = 100,
µp-vl = 33.3 and µudist = 14.3 for all experiments.

A.2. Evaluation

Transferability to Novel Downstream Tasks. We use
ELEVATER toolkit [19] to evaluate the model’s zero-shot
and linear probing performance on 20 image classification
datasets including both coarse and fine-grained tasks: Hate-
ful Memes [15], PatchCamelyon [30], Rendered-SST2 [26],
KITTI Distance [9], FER 2013 [14], CIFAR-10 [18], Eu-
roSAT [11], MNIST [6], VOC 2007 Classification [7],
Oxford-IIIT Pets [25], GTSRB [29], Resisc-45 [3], Describ-
able Textures [4], CIFAR-100 [18], FGVC Aircraft (vari-
ants) [23], Food-101 [2], Caltech-101 [8], Oxford Flowers
102 [24], Stanford Cars [17] and Country-211 [26]. Please re-
fer to Sec.C in Supplementary Material of ELEVATER [19]
for detailed dataset statistics and evaluation metrics. We
use the same prompt templates as ELEVATER toolkit. We
also evaluate the zero-shot performance on ImageNet-1K [5].
For linear-probing performance, we enable the grid search
of learning rate and weight decay before finetuning the last
classifier layer.

Robustness to Domain Shifts. Following CLIP [26], we
use five datasets which have the distribution shifts from
ImageNet-1K [5]: ImageNet-V2 Match frequency [27], Im-
ageNet Sketch [31], ImageNet Adversarial [13], Object-
Net [1] and ImageNet Rendition [12]. We use the same
80 prompt templates of ImageNet-1K for these datasets and
we report the average zero-shot top-1 performance on these
datasets as the metric for Robustness.

B. Visualization of the Constructed T

In Fig. 1, we randomly select several images and visual-
ize their paired sentences of original human annotations and
our proposed algorithms. For the second image with robot
hand, the chosen sentence describes the image content more
accurate than human labels. It indicates our proposed text
corpus selection algorithms choose sentences which are not
only close to the image in the feature space but also with
reasonable concept in the visualization.



“Due to the strike by State Transport staffers, 
official permission has been granted for all 
types of (private) buses (like school and company 
vehicles) to ferry passengers from ST depots,” 
Parveen Gedam, Transport Commission of 
Maharashtra, told PTI.

[Robot Hand: LeArchitectovia Shutterstock]

Imagine the future of Newtown Creek with 
Riverkeeper and NCA at the Kingsland 
Wildfowers Green Roof (520 Kingsland Avenue 
in Greenpoint) – details here.

DENVER (AP) � Authorities say a passenger was 
removed from a Frontier Airlines plane at the 
Denver airport after she dropped to the floor 
of the aircraft and began kicking and screaming 
before the plane took off.

Content continues below ad You need to watch 
what's around the fireplace. Anything that 
surrounds the fireplace could potentially heat up 
and release toxins.

Figure 1: Selected Sentences from ROBERTa NLP Corpus.

C. Contribution of each NLP dataset

In Fig. 2 (a) and (b), we counted the contribution of each
NLP datasets in original ROBERTa NLP Corpus [20] and our
constructed Text Corpus with 28.4M images. Comparing
with Fig. 2 (a) and (b), we show our proposed sentence
selection algorithm favors sentences from CC-NEWS [10]
and English-Wiki, which indicates there are more visually-
grounded sentences in these datasets. For instance, they
might contain more visual object entities.

D. Paired vs. Unpaired Dataloading

In the main paper, we load in images and texts indepen-
dently. In this section, we try to load the image and text in
pairs (image-caption) with GCC-3M [28], without introduc-
ing new losses to use the ground-truth information in the
paired image and text data. We re-tune the hyper-parameter
for the experiment when loading the paired data. In Table 2,
we show loading image and text in pairs does not benefit the
transferability during the knowledge distillation and even we
observe a small drop when switching to the paired dataload-
ing mechanism. We suspect the drop results from the fewer
combinations of image and text seen during the optimization

CC-NEWS OpenWebText  Stories English-Wiki BookCorpus

(a) ROBERTa NLP Data Distribution (b) Constructed Text Corpus Distribution

Figure 2: Analysis of Our Constructed Text Corpus from
ROBERTa NLP Corpus. Best viewed in color.

if we load image and text in pairs. It would be an interesting
future direction to study how to make better usage of the
annotated images and its associating text when there is a
small amount of image-text data available, which is out of
scope of this paper.

Dataloading Zero-Shot Linear Probing
ELEVATER IN-1K ELEVATER

Unpaired 38.6% 39.0% 68.2%
Paired 38.8% 38.3% 68.0%

Table 2: Paired vs. Unpaired Dataloading.

E. Conceptual Coverage Analysis

When we evaluate the zero-shot performance of our
distilled models on various downstream tasks in ELEVATER
and ImageNet-1K benchmarks, we find some tasks benefit
more from the teacher model than the others. We study
the performance gain or loss of our distilled model for a
single downstream task with respect to the teacher model’s
performance and the number of conceptually-related images
available during the training (see Fig. 3). We compute the
number of conceptually-related images to each individual
downstream task (green bars in Fig. 3) from Table 11 of [32].
• For Fig. 3 (a), we transfer the knowledge from the large

teacher model CLIP-ViT-L/14 to our Distill-ViT-B/32 and
compare with CLIP-ViT-B/32. Both CLIP-ViT-L/14 and
CLIP-ViT-B/32 are trained on the private 400M image-
text pairs while Distill-ViT-B/32 is trained on 40M im-
ages (consisting of images from IN-21K, GCC-15M and
YFCC-14M) and 28.4M unpaired sentences. Our Distill-
ViT-B/32 has obvious worse zero-shot performance than
CLIP-ViT-B/32 on five out of twenty-one datasets (i.e.
PatchCamelyon, MNIST, FER-2013, Stanford Cars and
KITTI Distance) due to either lack of conceptually-related
images in our small training set (MNIST, FER-2013 and
Stanford Cars) or the poor performance of the teacher
model (PatchCamelyon and KITTI Distance). Notably, if
we do not consider PatchCamelyon and KITTI Distance
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(b)   Distill-UniCL* v.s. UniCL* (IN-21K)
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(c)   Distill-UniCL* v.s. UniCL* (IN-21K+YFCC-14M)

# Conceptually-Related Examples in the Training Set Missing Data
Performance Gain/Loss of CLIP-ViT-L/14 over CLIP-ViT-B/32 

Performance Gain/Loss of Distill-ViT-B/32 over CLIP-ViT-B/32 

(a) Distill-ViT-B/32 v.s. CLIP-ViT-B/32 (IN-21K + GCC-15M + YFCC-14M)
Performance Gain/Loss of Distill-UniCL*over UniCL*

Performance Gain/Loss of CLIP-ViT-L/14 over UniCL*

Performance Gain/Loss of Distill-UniCL*over UniCL*
Performance Gain/Loss of CLIP-ViT-L/14 over UniCL*

Figure 3: Conceptual Coverage Analysis of Training Data over Each Downstream Task.

datasets where the large CLIP model does not full fill a
teacher role, our Distill-ViT-B/32 achieves the average
Zero-Shot performance 61.03% (vs. 60.95% for CLIP-
ViT-B/32) on the remaining 18 datasets in ELEVATER
benchmark.

• For Fig. 3 (b) and (c), we transfer the knowledge from
CLIP-ViT-L/14 to our Distill-UniCL* and compare with
UniCL*. Both Distill-UniCL* and UniCL* are trained on
the same relatively-small public datasets besides UniCL*
requires the paired image-text data. In Fig. 3 (b), we find
distillation from the huge teacher model overall performs
better than contrastive pretraining when there are a few
conceptually-related training examples. By adding a sig-
nificant amount (> 1 million) of conceptually-related im-
ages (see the comparison of between Fig. 3 (c) and (b) on

ImageNet and Oxford-Flowers datasets), the contrastive
pretraining gets closer zero-shot performance to our dis-
tillation method but the contrastive pretraining requires
the additional pairing information from the human anno-
tators. For those datasets which only get fewer than 0.25
million of new images (such as Caltech-101 and EuroSAT
datasets), the vision-language distillation still preserves
the superior performance to the contrastive pretraining.

F. MMD among Image and Text Corpora
We compute Maximum Mean Discrepancy (MMD) with

of four image/text corpora’s distributions in CLIP-ViT-L/14’s
shared feature space using linear, polynomial and RBF ker-
nel respectfully. We use multi-dimensional scaling (MDS)
to plot relatively locations of four corpora in a 2D space (see
Fig. 4). We have some observations of MMD analysis:
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Figure 4: MMD among four different image/text corpora’s in
the shared feature space. We put MMD value on each edge.

• There exists clear modality gap in the shared feature spaces
between the image and text features. It consists with the
T-SNE plot in Fig. 5 (in the main paper).

• With Algorithm 1, our constructed text corpus is closer to
visually-grounded caption corpus than the NLP corpus. It
consists with the T-SNE plot in Fig. 4 (in the main paper).

• In the main paper, we show the our selected sentence is
closer to the query image that its human-annotated cap-
tions. Here, we further show our constructed text corpus
is also closer to the image corpus in the distribution level.

G. Full Ablation Studies on Losses
In addition to Sec. 4.5 in the main paper, we provide our

full ablation study on losses with different image and text
training data. We show the effectiveness of Lp-vl and Ludist

by Zero-Shot on ELEVATER and IN-1K in three realistic
settings (see Fig. 5): (1). The image concepts are entirely
overlapped with visually-ground sentences (‘Cyan’ curves).
(2). The image concepts and the visually-grounded sentences
are independent (‘Orange’). (3). The image concepts are par-
tially covered by the visually-grounded sentences (‘Purple’).
Ablation on Lp-vl. We gradually put more weights on the

Lp-vl by increasing λ1 in Eq.6 (main paper) from 0 to 1 in
Fig. 5 (a). We compare the inter-batch version (i.e. ui and
uj in Eq.10 from different batches) and intro-batch version
(i.e. ui and uj from the same batch) of Lp-vl and find the
intro-batch Lp-vl performs better than inter-batch Lp-vl in
setting (1) and (2), so we keep intro-batch version in other
experiments. Furthermore, adding Lp-vl with λ1 ≤ 0.9
brings better zero-shot performance than only using Lvl

in all three settings. However, we observe the dramatic
performance drop when we totally replace Lvl with Lp-vl
(i.e. λ1 = 1). We argue improvement with smaller λ1’s and
drop at λ1 = 1 both due to the gap between images and text
embeddings in the shared feature space. Interestingly, we
find that the performance with λ1 > 0 in setting (2) is better
than using pure Lvl (λ1 = 0) in setting (3). It indicates that
Lp-vl is more effective than prompt sentences of class names
since using image embeddings as pseudo text embeddings
in Lp-vl introduces richer concepts than class names.
Ablation on Ludist. We increase λ2 from 0 to 5, to introduce
Ludist as a regularization term. Generally, Ludist benefits
the Zero-Shot on ELEVATER since it tries to preserve the
geometry of image features. But different λ2 works the best
for different datasets. Ludist slightly improves IN-1K per-
formance when λ2 is small but it quickly harms IN-1K per-
formance when λ2 gets larger. We suspect the poor student
embedding in early training along with the large regular-
ization term detours the gradient decent trajectory. Ludist

is more effective when the text does not cover the image
concepts in setting (2), where it still improves Zero-Shot on
ELEVATER and IN-1K with a large λ2. Our main experi-
ment (Table. 1 in the main paper) further shows Ludist is
less effective when applying Lp-vl and Ludist together.

H. Detailed Performance on Each Dataset
In this section, we provide the zero-shot performance of

models proposed in this paper for each downstream dataset.
Other public models’ (such as CLIP [26] or UniCL [32])
performance can computed by ELEVATER toolkit [19] (see
Table. 3). We also report the number of conceptually-related
images computed from Table 11 of [32] for each down-
stream dataset. Furthermore, we report the detailed perfor-
mance on five datasets with the domain shift to ImageNet-1K
(see Table 4) as the supplement to Table 1 in the main paper.



Zero-Shot on ELEVATOR Zero-Shot on ELEVATORZero-Shot on IN-1K

(a) Ablation Study on Pseudo-MM Score Distillation Loss (b)     Ablation Study on Uni-Modal Distance Preserving Regularizer

Zero-Shot on IN-1K
Line Type
Intro-Batch

Inter-Batch

Line Color

Image: GCC-3M
Text: GCC-3M 

Image: IN-21K 
Text: 1/4 GCC-3M 

Image: IN-21K 
Text: 1/4 GCC-3M 
        + IN-21K

Figure 5: Ablation Studies on Pseudo-VL Score Distillation Loss Lp-vl and Uni-Modal Distance Preserving Regularizer Ludist.
When using IN-21K images as image corpus in both ablation studies, using Lp-vl and Ludist better utilizes image embeddings. Sometimes,
it even performs better than directly incorporating class names in Lvl (i.e the Orange Curve is sometimes above the Purple “– · – ·” line. )

Downstream Tasks ViT-B/32 Swin-Tiny (IN-21K) Swin-Tiny (IN-21K+YFCC-14M)
# CR-Images DIME-FM # CR-Images UniCL* DIME-FM # CR-Images UniCL* DIME-FM

Hateful Memes 3.1K 54.4% 80 53.9% 53.1% 322 52.9% 53.6%
PatchCamelyon 158 52.9% 0 49.6% 52.9% 15 51.5% 50.4%
Rendered-SST2 3.4 K 50.0% 650 49.9% 9.4% 3.2K 49.8% 49.8%
KITTI Distance - 9.28% - 24.6% 22.2% - 12.4% 10.3%

FER 2013 579 39.5% 432 24.0% 92.2% 467 25.3% 27.4%
CIFAR-10 0.6M 95.5% 5.9K 91.2% 92.2% 335.8K 89.3% 90.2%
EuroSAT 68.0K 54.0% 0 27.2% 30.4% 46.4K 36.5% 46.1%
MNIST 1.1K 38.8% 0 11.64% 21.6% 619 13.0% 20.1%

VOC 2007 Classification 1.1M 83.4% 3.3K 82.0% 83.3% 544.4K 82.9% 83.4%
Oxford-IIIT Pets 9.1K 88.6% 3.3K 47.6% 70.1% 5.6K 69.1% 74.3%

GTSRB 610 27.6% 0 7.7% 16.2% 545 11.8% 15.0%
Resisc-45 1.3M 55.2% 7.8K 21.6% 29.3% 955.2K 32.3% 40.3%

Describable Textures 5.2K 52.6% 5.2K 37.7% 46.38% 4.4K 42.0% 47.4%
CIFAR-100 3.8M 76.4% 42.2K 66.8% 71.0% 1.9M 64.1% 68.9%

FGVC Aircraft (variants) 90 20.1% 0 3.0% 6.8% 0 9.1% 12.8%
Food-101 57.7K 80.4% 13.8K 57.0% 69.3% 41.9K 65.9% 71.7%

Caltech-101 1.0M 89.6% 28.6K 82.5% 85.2% 475.4% 84.4% 85.7%
Oxford Flowers 102 2.9M 75.9% 26.7K 73.4% 79.0% 2.9M 77.9% 77.0%

Stanford Cars 0 43.35% 0 2.3% 5.0% 0 8.0% 12.5%
Country-211 - 17.1% - 3.4% 7.5% - 13.5% 14.9%

Imagenet 2.1M 60.8% 0 51.4% 59.5% 1.3M 58.7% 60.0%

Table 3: Conceptually-Related Images and Different Models’ Zero-Shot Performance on Each Dataset. We provide the zero-shot
performance of every model proposed in this paper for each dataset. We also report the number of conceptually-related images (CR-Images).

Models ImageNet-v2 ImageNet-R ObjectNet ImageNet-Sketch ImageNet-A Average
CLIP-ViT-B/32 55.9% 69.0% 44.2% 42.3% 31.5% 48.6%

Distill-ViT-B/32 (Captions) 57.5% 69.7% 42.5% 45.7% 31.6% 49.4%
Distill-ViT-B/32 (NLP Texts) 58.9% 69.8% 43.2% 46.5% 32.2% 50.2%

Table 4: Robustness. Our Distilled-ViT-B/32 models perform better than CLIP-ViT-B/32 model on 5 datasets which have distribution shift
to origin ImageNet-1K data. The results demonstrates our distilled models preserve the robustness to the distribution shift.
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