
Supplementary

The supplementary is organized in the following sec-
tions:

• Section A: More details about the experiments.
• Section B: Connection and comparison between

APFL [2] and FedPerfix.
• Section C: More hyperparameter ablations of FedPer-

fix.

A. Experiment Details

A.1. Visualization of Data Partitioning

We partition the data in each dataset with Dirichlet distri-
butions, which is a common setting in previous work [9, 6].
The details of the distributions are visualized in Figure 1.
Specifically, the number of clients N , number of classes
C, and the parameter of Dirichlet distribution α for each
dataset are as follows:

• CIFAR-100 [5]: N = 64, C = 100, α = 0.1.
• OrganAMNIST [12]: N = 64, C = 11, α = 0.5.
• Office-Home [11]: N = 16, C = 65, α = 1.0.

A.2. Hyperparameters

We perform experiments based on the implementation
from an existing federated learning platform. For each
method, we tune the hyperparameters in a range and report
the result with the optimal hyperparameters. The range and
optimal value of the hyperparameters are as follows:

FedAVG [8]: Learning rate (lr) is searched from
{0.001, 0.01, 0.1}. The optimal value is 0.01.

Local: lr is searched from {0.001, 0.01, 0.1}. The opti-
mal value is 0.01.

APFL [2]: lr and the initial mixture coefficient α are
searched from {0.001, 0.01, 0.1} and {0.25, 0.5, 0.75}, the
optimal values are lr = 0.01 and α = 0.25.

Per-FedAVG [3]: lr and β are searched from
{0.001, 0.01, 0.1} and {0.001, 0.01, 0.1}, the optimal val-
ues are lr = 0.001 and β = 0.001.

FedBN [7]: lr is searched from {0.001, 0.01, 0.1}. The
optimal value is 0.01.

FedRep [1]: lr is searched from {0.001, 0.01, 0.1}. The
optimal value is 0.01. The classification head is defined as
the last layer.

FedBABU [10]: lr is searched from {0.001, 0.01, 0.1}.
The optimal value is 0.01. One local step is done for fine-
tuning the classification head. The classification head is de-
fined as the last layer.

FedPerfix: lr is searched from {0.001, 0.01, 0.1}, and
the optimal value is 0.01. The hidden state dimension is set
as 256. The scale s is set as 1.5. The classification head is
defined as the last two layers.

B. Connection between APFL and FedPerfix
In this section, we provide a detailed comparison be-

tween the APFL and FedPerfix to explain why they both
have the leading performance compared with other meth-
ods and show that our method has additional advantages in
storage and computation resource requirements.

B.1. Why APFL and FedPerfix lead the perfor-
mance?

First, we briefly introduce the idea of APFL. APFL keeps
a separate personalized model for each client. In each com-
munication round, it will first train the global and local
models separately and obtain their gradients, then update
the personalized model with the gradient mixed from these
two models. Now if we only consider the personalized
model, its update can be written as

hper ← hper − η(α∇hper + (1− α)∇hglobal)

= hper − η∇(αhper + (1− α)hglobal),
(1)

where hper is the personalized model, hglobal is the global
model, η is the learning rate, and α is the mixture coeffi-
cient.

Therefore, the updating of the personalized model is
equivalent to updating a model h̄ that takes the mixture of
the personalized and global models as the output. Further,
we formulate the output of h̄ as

O(L) =αh(L)
per(Z

(L−1)) + (1− α)h
(L)
global(Z

(L−1)),
(2)

where L is the number of layers of the model, Z(L−1) is the
hidden state from the last layer.

For FedPerfix, the output of one head of the self-attention
layer can be formulated and rewritten [4] as

head(Z) =Attn(ZWq,Z[Pk,Wk],Z[Pv,Wv])

=softmax(ZWq[Pk,Wk]
⊤)

[
Pv

ZWv

]
=(1− λ(Z))softmax(ZWqW

⊤
k Z⊤)ZWv

+ λ(Z)softmax(ZWqP
⊤
k )Pv

=(1− λ(Z))Attn(ZWq, xWk, xWv)

+ λ(Z)Attn(ZWq,Pk,Pv)
(3)

where Attn is the attention operation, Z is the hidden state
from the last layer, and λ(Z) is the mixture coefficient de-
fined as

λ(Z) =

∑
i exp(ZWqP

⊤
k )i∑

i exp(ZWqP⊤
k )i +

∑
j exp(ZWqW⊤

k Z⊤)j
.

(4)
If only taking the self-attention layer into consideration,

Equation 2 and Equation 3 share a similar formulation,
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Figure 1. Data Partitioning of each dataset.

which can be interpreted as an information transfer between
the global and local models. Therefore, both approaches
have a leading performance, indicating that the underlying
idea to balance local and global information is effective and
crucial in personalized federated learning.

B.2. Advantages of FedPerfix

Although APFL and FedPerfix share a connected under-
lying idea, FedPerfix can outperform APFL in a consistent
margin across different settings. Besides, FedPerfix is much
more efficient than APFL from several perspectives:

• Parameter size of the Prefixes in FedPerfix (289.0K)
is fewer than a separate self-attention layer (577.5K)
in APFL, leading to fewer computational costs for the
self-attention layer.

• APFL needs to perform the mixture between the global
and local models with additional computational costs
for every layer, while FedPerfix only needs to perform
it for the self-attention layers.

• APFL needs to store a separate personalized model
(21.03M) on each client, while FedPerfix only needs
(3.39M) additional space.

In conclusion, APFL needs 70× additional FLOPs and
6.2× additional parameters to store than FedPerfix, using
FedAVG as a baseline. Therefore, when compared with
APFL, FedPerfix not only achieves superior performance
but also enjoys a more efficient implementation by specify-
ing and focusing only on the sensitive parts of the ViT. This
targeted approach leads to a more effective and efficient ap-
proach for personalized federated learning.

C. More Ablation Study
To reduce the exhausting hyperparameter-searching in

practice, we report the result under a unified default set-
ting for all tasks in the main paper. The performance under
such a unified default setting still achieves state-of-the-art
performance, demonstrating the robustness of our proposed
method. However, we still want to demonstrate the potential
to further improve the performance by tuning the hyperpa-

rameters. In this section, we will show the results and ana-
lyze the impact of three key hyperparameters in FedPerfix:
hidden dimension, scale, and the depths of prefixes.

C.1. Impact of Hidden Dimension and Scale

The hidden dimension is the dimension of the hidden
state of the adapter to generate the Prefixes, i.e., the com-
mon dimension shared by Wdown and Wup, and the scale
s is scalar to control the impact of the Prefixes. In our de-
fault setting, the hidden dimension is set as 256, and the
scale is set as 1.5. FedPerfix, under the default setting, can
outperform all the compared methods in all datasets. Here,
we demonstrate the potential to achieve better performance
on CIFAR-100 by tuning the hyperparameters. As shown in
Figure 2 (a) and (b), increasing the hidden dimension and
scale will not always lead to an increase in performance.
Therefore, in practice, further tuning the hidden dimension
and the scale can lead to a better result, even though without
such tuning can still maintain a high performance.

C.2. Impact of the Depths of Prefixes

In our default setting, we add the Prefixes to every self-
attention layer. To investigate the impact of the depths of
Prefixes, we further conduct experiments only to add Pre-
fixes to the last several self-attention layers, i.e., depth = 1
means only adding Prefixes to the last self-attention layer.
The result is shown in Figure 2 (c). In general, with the in-
crease in the depths of the Prefixes, the overall performance
increases. However, such an increase is not strict, indicating
the potential to further improve the performance and reduce
storage and computational costs.
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Hampson, and Blaise Agüera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized
Data, Feb. 2017. arXiv:1602.05629 [cs]. 1

[9] Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee,
Zhengming Ding, and Chen Chen. Local Learning Matters:
Rethinking Data Heterogeneity in Federated Learning, Apr.
2022. arXiv:2111.14213 [cs]. 1

[10] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fed-
BABU: Towards Enhanced Representation for Federated Im-
age Classification, Mar. 2022. arXiv:2106.06042 [cs]. 1

[11] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 1

[12] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin
Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni.
MedMNIST v2-A large-scale lightweight benchmark for 2D
and 3D biomedical image classification. Scientific Data,
10(1):41, 2023. Publisher: Nature Publishing Group UK
London. 1


