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In this supplementary material, we provide additional
details, results and analyses on the experiments conducted
in the main paper.

A. Dataset Details

Office-31 [10] contains 31 classes of 4,110 office en-
vironment related images. It has three domains: Amazon
(A), DSLR (D) and Webcam (W). Office-Home is a similar
dataset, containing 15,500 office images from 65 classes,
split in four domains: Product (Pr), Clip Art (Cl), Artistic
(Ar) and Real-World (Rw). Office-Home RSUT [12] is a
subset of Office-Home created with the protocol of Reverse-
unbalanced Source and Unbalanced Target to have a large
label distribution shift. The major classes in the ‘RS’ fold
become minor classes in the ‘UT’ fold, while the minor
classes in the ‘RS’ fold become major classes in the ‘UT’
fold. VisDA [7] is a large-scale Synthetic-to-Real dataset
of 12 objects. The training set contains 152,397 synthetic
2D renderings of 3D models and the validation set contains
55,388 real images. We use the training set as the source
domain and the validation set as the target domain. Do-
mainNet [6] consists of about 0.6 million images from 345
classes, distributed in six domains. Following [8, 3], we use
five domains: Real (R), Clipart (C), Painting (P), Sketch
(S), and Quickdraw (Q) for experiments.

B. Implementation Details

We implement all experiments with PyTorch 1.8. Re-
sults are run on servers with NVIDIA A5000/A6000 GPU.
Following previous ADA works [1, 14, 13], we use ResNet-
50 [2] pretrained on ImageNet [9] as the backbone net-
work, a bottleneck layer (Linear->BatchNorm1d), and
a classification head of one single Linear layer. The
bottleneck feature dimension is 256. Training images are
first resized to 256×256, and then randomly cropped to
224×224. Test images use center cropping instead. We
adopt Adadelta optimizor with learning rate of 0.1 and a
batch size of 32. On Office-Home and Office-31, we first
train the models on only source data for 10 epochs, and
then train on both source and target data with active do-

main adaptation for 30 epochs. At the epoch of 10, 12,
14, 16, 18, B/5 target data are selected for querying labels,
where B is the labeling budget. On VisDA, we conduct
source-only training for 1 epoch and ADA for 10 epochs.
On DomainNet, we conduct source-only training for 10
epochs and ADA for another 10 epochs. Mean accuracies
of 3 repeated experiments are reported. Code is available at
https://github.com/tsun/LADA.

C. Additional Results and Analyses

Running time. Table A.1 reports running time in seconds
with one A6000 GPU, including active sampling (AL) time
averaged over 5 rounds (10%-budget) and model update
(DA) time averaged over all training epochs. LAS con-
sumes much less time than CLUE and slightly more than
other AL methods. RAA/LAA is comparable to MCC and
faster than CDAC.

Pseudo-label quality of LAA/RAA. We conduct experi-
ments with different confidence thresholds τ and report the
percentage of target samples in the anchor set with correct
pseudo-labels. Shown in Fig. A.3, as τ reduces, the pseudo-
label quality decreases. LAA has better pseudo-label qual-
ity than RAA. We also report results by fixing τ = 0.9 and
varying neighborhood size K in LAA (dashed lines). Over-
all, τ = 0.9 used in the paper leads to a decent pseudo-label
quality.

Comparison with other criteria on Office-31 Figure A.1
presents analyses on Office-31 similar to that on Office-
Home in the Fig. 2 of the main paper. In the left figure,
our LAS outperforms other active leaning criteria for label-
ing budgets ranging from 3% to 20%. When the labeling
budget is small (e.g., 3% or 5%), LAS boosts the accuracy
by a large margin. Since in ADA the situation with a small
labeling budget is more important, it shows the effective-
ness of LAS. In the center figure with 5%-budget, the curve
of LAS lies above others after 1% samples are selected. In
the right figure, when combined with five different domain
adaptation strategies, LAS consistently achieves the highest
accuracies than three other active learning criteria that are
previous arts.

https://github.com/tsun/LADA
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Figure A.1: Analysis on Office-31. (Left) varying labeling budget; (Center) accuracy curves with 5%-budget; (Right) com-
bining AL criteria with different DA strategies.
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Figure A.2: (a-d) t-SNE visualization of target features on Office-Home Rw→Ar. Samples are colored according to their
normalized uncertainty scores, where red indicates large values and blue indicates small values. The top 10% samples with
highest scores are marked with black boarders. (e) Histogram of target samples by normalized scores.

Table A.1: Running time on Office-Home Ar�Rw and VisDA in seconds.

AL DA

BADGE AADA CLUE MHPL LAS ft MCC CDAC RAA LAA

Ar→Rw 17.6±0.5 18.4±0.8 24.0±0.9 17.8±0.4 18.2±0.7 30.2±8.7 39.6±8.6 67.4±16.5 63.0±18.2 62.0±10.8

VisDA 80.4±2.4 57.0±1.7 733.2±56.6 70.0±2.6 105.6±17.9 1136.6±45.3 1623.4±18.4 2662.0±17.2 1449.8±15.8 1624.2±245.2

Table A.2: Comparison with Semi-Supervised Domain Adaptation methods on Office-Home using 10%-budget.

Task Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

SSDA ECACL 72.2 86.7 82.8 70.5 85.0 82.6 70.9 71.5 82.9 76.0 74.0 88.9 78.7
CDAC 69.5 83.2 80.2 66.9 82.4 78.7 66.1 70.6 80.9 72.3 70.5 87.2 75.7

ADA

TQS 64.3 84.8 83.5 66.1 81.0 76.7 66.5 61.4 82.0 73.7 65.9 88.5 74.5
CLUE 62.1 80.6 73.9 55.2 76.4 75.4 53.9 62.1 80.7 67.5 63.0 88.1 69.9
S3VAADA 67.8 83.9 82.9 67.0 81.4 79.5 65.8 65.9 82.4 74.8 68.6 87.9 75.7
LAMDA 74.8 88.5 86.9 73.8 88.2 83.3 74.6 75.5 86.9 80.8 77.8 91.7 81.9
LADA 77.2 91.9 88.1 76.9 91.1 86.8 76.6 78.1 88.3 82.0 79.0 93.8 84.2

Remarks on SSDA. Semi-supervised DA (SSDA) is
closely related to Active DA. In both task, a few labeled tar-
get data and many unlabeled target data are available. Yet
there are some differences. In SSDA, all labeled target data
are provided for once at the beginning of training and fixed
afterwards. While in ADA, labeled target data are actively
selected. The active querying and model update interleave
for several rounds during the training of ADA.

Existing SSDA methods can be directly applied in ADA.
In the paper, we have compared different active query meth-
ods when using MME [11] and CDAC [4] as the model
adaptation methods. Additional results on Office-Home

with CDAC is provided in Tab. A.4. Generally, the pro-
posed LAS can select more informative samples than other
active selection criteria.

Nevertheless, it may be sub-optimal to simply combine
active query with existing SSDA methods. A unified ADA
solution that considers both active query and model adap-
tation would be better effective. Tables A.2, A.3 present
comparison results with two state-of-the-art SSDA meth-
ods, ECACL [5] and CDAC [4]. The comparison results
are taken from [3]. It should be noted that although ADA
can select more informative labeled samples, the perfor-
mance is also affected by the way to utilize unlabeled data.
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Figure A.3: Pseudo-label quality averaged over Office-
Home Cl�{Ar, Pr, Rw} (upper) and Office-Home RSUT
C�{P, R} (lower) using 10%-budget.

Table A.3: Comparison with SSDA methods on Office-
Home RSUT using 10%-budget.

Task Method C�P C�R P�C P�R R�C R�P Avg.

SSDA ECACL 78.6 68.6 59.5 77.1 61.9 82.0 71.3
CDAC 73.0 58.7 55.8 73.3 50.3 77.3 64.7

ADA

TQS 69.4 65.7 53.0 76.3 53.1 81.1 66.4
CLUE 69.7 65.9 57.1 73.4 59.5 82.7 68.1
S3VAADA 73.0 63.0 50.7 69.6 52.6 78.3 64.5
LAMDA 81.2 75.7 64.1 81.6 65.1 87.2 75.8
LADA 83.2 77.2 63.8 83.0 65.4 88.1 76.8

From the tables, ECACL and CDAC surpass three early
ADA methods. The state-of-the-art LAMDA method se-
lects target data to approximate the entire target distribu-
tion, and addresses the issue of label distribution mismatch
between source and target domains. It obtains better per-
formances than SSDA arts. Our proposed LADA (LAS w/
LAA) selects locally-representative samples, and progres-
sively expand the labeled data with confident samples in
a class-balanced manner. LADA outperforms LAMDA by
+2.3% on Office-Home and +1.0% on Office-Home RSUT.
When replacing LAA with CDAC in LADA, the perfor-
mance drops, as we show in the paper.

Uncertainty measures in LAS. Figure A.2 visualizes the
target features on Office-Home Rw→Ar. Similar to the
plots in Fig. 3 of the paper, entropy and margin include
some outliers in the top 10% samples (see circles with black
boarders in the bottom part of Figs. A.2a, A.2b). For NAU
in Fig. A.2c, target data have small normalized scores. Tar-
get data with high normalized LI scores form several small
clusters in Fig. A.2d. From the histogram in Fig. A.2e, a
maximal can be observed around 0.6-0.7 for LI. These phe-
nomenons are similar to Office-31 W→A in the paper.

RAN ENT MAR CoreSet BADGE AADA CLUE CONF LAS80

85

90

95

100

Ac
cu

ra
cy

 (%
)

RAN ENT MAR CoreSet BADGE AADA CLUE CONF LAS70

75

80

85

90

Ac
cu

ra
cy

 (%
)

ft w/ CE loss MME

Figure A.4: Visualization of standard deviations on Office-
31 A→W (upper) and W→A (lower) using 5%-budget.

Training with a joint labeled set. In the implementation of
some early ADA works [1, 14], the queried labeled data are
added to the source labeled data, and training mini-batches
are sampled from this joint labeled set. The objective is

L = E(x,y)∼Ds∪Dtl
ℓce(h(x), y) (A.1)

where ℓce is the cross entropy loss. Differently, recent
works [13, 3] and ours adopt

L = E(x,y)∼Ds
ℓce(h(x), y)+E(x,y)∼Dtl

ℓce(h(x), y) (A.2)

Comparing Eq. A.1 with Eq. A.2, the advantage of train-
ing with a joint labeled set is that it only needs to back-
propagate through one batch of data, thus reducing the
memory and computation usage. The disadvantage is that
the labeled data set is dominated by the source data. When
there is a large domain gap (e.g. when label distribution shift
exists), the performance may be hurt.

Nevertheless, to better demonstrate the effectiveness of
LAS, Table A.4 lists the results using fine-tuning with a
joint labeled set. Accuracies are slightly lower than their
counterparts in Table 1 of the main paper. LAS still achieves
the best scores among all AL methods.
Visualization of standard deviations. Figure A.4 plots the
standard deviations on two Office-31 tasks over 3 repeated
experiments. Performances are relatively stable to different
random initializations. Of all active selection methods, our
proposed LAS obtains the highest average accuracies.
Visualization of LAS. To visualize how LAS selects tar-
get samples, we present t-SNE plots of target features on
Office-Home Pr→Ar and Ar→Pr in Fig. A.5 and Fig. A.6,
respectively. We choose the 10th epoch, where 10% tar-
get data are selected as candidates based on LI-scores, of
which 1% target data from cluster centroids are selected for
querying labels. Candidate, selected and remaining target
samples are marked with squares, stars and points, respec-
tively. The top 20 candidates and queried images are also



Table A.4: Accuracies (%) on Office-Home with 5% labeled target samples. (†Training mini-batches are sampled from a
joint labeled set.)

AL method DA method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

RAN

ft w/ CE loss†

60.5 78.4 79.0 60.2 74.4 72.7 61.5 56.2 77.6 69.9 59.6 82.8 69.4
ENT 62.8 81.5 82.7 64.1 78.1 75.7 63.4 57.5 81.2 72.8 62.5 87.3 72.5
MAR 64.0 81.8 82.7 64.1 79.0 74.9 64.6 59.9 80.7 73.2 64.6 87.8 73.1
CoreSet 58.5 77.1 79.3 60.8 72.4 71.8 60.9 54.9 77.3 70.9 58.8 81.3 68.7
BADGE 65.5 83.6 82.1 63.1 79.8 75.3 64.9 61.0 80.8 73.1 65.1 87.1 73.5
AADA 61.8 82.0 82.1 62.3 77.7 76.0 63.1 59.4 81.8 72.9 62.4 87.2 72.4
CLUE 65.3 81.8 81.7 62.6 78.5 74.8 63.9 61.4 79.9 72.9 63.1 87.6 72.8
CONF 63.4 81.9 82.9 63.8 78.2 75.8 64.2 60.2 81.6 73.3 63.2 87.4 73.0
MHPL 65.6 82.1 82.9 65.3 79.1 74.6 64.7 61.4 81.6 73.3 63.7 88.1 73.5
LAS 67.2 84.3 83.1 65.1 80.9 77.0 65.3 62.5 81.4 73.8 66.7 89.0 74.7

RAN

CDAC

61.6 78.8 80.1 67.7 80.2 77.6 68.7 61.9 79.7 74.1 63.0 85.2 73.2
ENT 62.9 81.9 83.4 69.0 82.0 80.0 70.3 63.3 84.2 75.6 67.7 87.1 75.6
MAR 65.6 83.8 83.3 69.0 83.7 81.0 70.2 65.7 84.6 75.9 67.0 88.1 76.5
CoreSet 58.9 77.7 79.6 67.1 77.9 77.2 67.4 58.6 81.6 73.6 63.4 83.4 72.2
BADGE 63.3 80.4 81.3 69.6 83.0 78.8 70.4 62.7 83.6 76.1 67.4 88.0 75.4
AADA 61.8 81.8 82.8 69.6 83.2 80.4 70.7 63.5 84.3 76.2 66.2 87.2 75.6
CLUE 65.2 83.6 82.3 68.8 84.4 79.8 69.7 64.9 83.6 75.2 68.0 87.5 76.1
CONF 62.6 82.9 83.8 70.6 83.6 79.7 70.0 64.6 84.3 76.4 66.8 88.1 76.1
MHPL 65.5 82.4 82.7 70.8 84.1 81.7 70.5 66.2 84.3 76.9 68.7 87.8 76.8
LAS 67.4 85.4 83.1 71.0 85.0 81.7 72.1 67.8 85.1 77.4 70.4 89.5 78.0

LAS RAA 71.2 88.1 85.3 73.2 87.8 83.8 72.6 72.2 86.6 79.2 74.4 91.7 80.5
LAS LAA 71.2 87.4 84.6 72.1 87.0 83.6 71.5 71.6 85.3 79.3 75.5 90.4 80.0

displayed under the t-SNE plots. As can be seen, the can-
didates (i.e., samples with large LI-scores) generally lie in
the regions where model predictions are inconsistent. It is
also difficult to distinguish their semantic labels visually,
especially for Pr→Ar, indicating that these images are hard
cases. There are some highly similar images in the candi-
dates. After the second step of diverse selection, images
selected for querying labels become much more diverse.
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Figure A.5: Visualization of LAS sampling on Office-Home Pr→Ar. The first row presents t-SNE plots. Squares denote
candidate target samples based on LI-scores; stars denote selected target samples for querying labels; and points denote the
rest target samples. Each marker is colored according to its (left) ground-truth label and (right) pseudo label from the current
model. The last two rows plot top 20 candidate samples and queried samples with largest LI-scores, respectively.
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Figure A.6: Visualization of LAS sampling on Office-Home Ar→Pr. The first row presents t-SNE plots. Squares denote
candidate target samples based on LI-scores; stars denote selected target samples for querying labels; and points denote the
rest target samples. Each marker is colored according to its (left) ground-truth label and (right) pseudo label from the current
model. The last two rows plot top 20 candidate samples and queried samples with largest LI-scores, respectively.


