
A. Architecture
The architecture of our MAPConNet is based on that of

3D-CoreNet [33] and is shown in Table 3. We use F , C,
and R to denote the feature extraction, correspondence, and
refinement modules, respectively. We let Nid and Npose be
the number of vertices in the input identity and pose meshes,
respectively. One major difference between our method and
3D-CoreNet is that the output of our F module is split into
identity and pose parts, each with a size of Nid × 128 (for
identity input) or Npose × 128 (for pose input), whereas
3D-CoreNet outputs a single feature of size Nid × 256 or
Npose × 256. In addition, we only feed the identity part
of the latent feature to the refinement module, resulting in
a slightly lower total number of trainable parameters (23.8
million compared to 24.5 million in 3D-CoreNet).

Module Layer Output shape(s)

F

Conv1D, 1 Nid × 64, Npose × 64
Conv1D, 1 Nid × 128, Npose × 128
Conv1D, 1 Nid × 256, Npose × 256

RB ×4 Nid × 128, Nid × 128
Npose × 128, Npose × 128

C

Conv1D, 1 Nid × 256
Conv1D, 1 Npose × 256
OT matrix Nid ×Npose

Warped Nid × 3

R

Conv1D, 3 Nid × 1024
Conv1D, 1 Nid × 1024
ElaIN RB Nid × 1024
Conv1D, 1 Nid × 512
ElaIN RB Nid × 512
Conv1D, 1 Nid × 256
ElaIN RB Nid × 256
Conv1D, 1 Nid × 3

Table 3. The layers of MAPConNet in detail. We use “Conv1D,
K” denote a 1D convolutional layer with kernel size K, “RB”
for a residual block, and RB ×4 means the same RB architecture
repeated 4 times in succession. When a layer has multiple output
shapes, that layer is shared between those outputs.

B. Additional results
We include additional qualitative comparisons on unseen

input meshes from SMPL (see Figure 10), SMAL (see Fig-
ure 11), DFAUST (see Figure 12), and MG (see Figure 13).
Similar to observations we obtained from Figures 5 and 6,
our MAPConNet while under a fully supervised setting can
generate more accurate outputs compared to 3D-CoreNet,
particularly in the limbs, as shown by the PMD heatmaps.
Our unsupervised and semi-supervised results are also com-
parable to the supervised ones.

In Figure 12, one can clearly observe that our unsu-
pervised and semi-supervised models (U) and (V) produce

Algorithm 1 MAPConNet in Supervised Learning.
Require: Dataset of triplets {(xA1,xB2,xB1), . . .},

wherein poses must be aligned across identities.
1: Initialise: Generator G with trainable weights θG, fea-

ture extractor F (which is a part of G), time step t = 0,
initial learning rate η0, maximum time step tmax.

2: repeat
3: Retrieve samples xA1 ∈ RNpose×3 and xB2,xB1 ∈

RNid×3 whose vertices are randomly re-ordered so
that xB1 is aligned with xB2 but not xA1.

4: With xA1 as the pose input, xB2 as the identity input,
compute OT matrix T ∈ RNid×Npose , and B from T
(Equation 10).

5: Generate warped output wB1 = TxA1 and final out-
put x̂B1 ∈ RNid×3.

6: Compute Ls (Equation 3):
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where xB1 is the ground truth.
7: Compute Lss
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8: Compute Lpoint (Equation 12):
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9: Compute gradients and update:

θG ← θG − ηt
∂LL

∂θG
, (20)

where

LL = Ls + Lss
mesh + Lpoint. (21)

10: t← t+ 1.
11: until t = tmax.

more accurate transfer results on DFAUST inputs than su-
pervised models (C) and (D) that can only be trained using
labelled data SMPL and partial models (S) and (T). In Fig-
ure 13, the identity and pose inputs are chosen from differ-
ent datasets but one of them is from MG. In this scenario,
the model has to not only perform pose transfer on unseen
meshes across different domains, but also handle the dis-
crepancy in the numbers of vertices of both inputs. Our



Algorithm 2 MAPConNet in Unsupervised Learning.
Require: Dataset of triplets {(xA1,xA2,xB3), . . .}, wherein poses do not have to align across identities.

1: Initialise: Generator G with trainable weights θG, feature extractor F (which is a part of G), time step t = 0, initial
learning rate η0, maximum time step tmax.

2: repeat
3: Retrieve meshes xA1,xA2 ∈ RNpose×3 and xB3 ∈ RNid×3 whose vertices are randomly re-ordered so that xA1 is

aligned with xA2 but not xB3.
4: With xA1 as pose input, xA2 as identity input, compute OT matrix Tcc ∈ RNpose×Npose .
5: Generate warped output wA1 = Tccx

A1 and final output x̂A1 ∈ RNpose×3.
6: Compute Lcc (Equation 4):

λrecLrec(x̂
A1;xA1) + λedgeLedge(x̂

A1;xA2). (22)

7: With xA1 as pose input, xB3 as identity input, compute OT matrix T ∈ RNid×Npose , and B from T (Equation 10).
8: Generate warped output wB1 = TxA1 and final output x̂B1 ∈ RNid×3.
9: With SG(x̂B1) as pose input, xA2 as identity input, where SG stops the backward gradient flow, compute OT matrix

T′ ∈ RNpose×Nid , and B′ from T′ (Equation 10).
10: Generate warped output w̃A1 = T′SG(x̂B1) and final output x̃A1 ∈ RNpose×3.
11: Compute Lsc (Equation 5):
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mesh (Equation 9):
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13: Compute Lss
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14: Compute Lpoint = Lcc
point + Lsc

point (Equation 12), where:
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15: Compute gradients and update:

θG ← θG − ηt
∂LU

∂θG
, (29)

where
LU = Lcc + Lsc + Lcc

mesh + Lss
mesh + Lpoint. (30)

16: t← t+ 1.
17: until t = tmax.



Algorithm 3 MAPConNet in Semi-supervised Learning.
Require: Labelled (pose aligned) dataset

XL = {xA,1, . . . ,xA,n,xB,1, . . . ,xB,n, . . .},

and unlabelled (pose unaligned) dataset

XU = {xα,α1 , . . . ,xα,αnα ,xβ,β1 , . . . ,xβ,βnβ , . . .},

where α, β, . . . are used to distinguish identities in XU

from those inXL, and α1, β1, . . . are used to emphasize
that poses are unaligned across identities.

1: Initialise: Generator G with trainable weights θG, fea-
ture extractor F (which is a part of G), time step t = 0,
initial learning rate η0, maximum time step tmax, and
current number of unlabelled iterations done nU = 0.

2: repeat
3: if iteration t is labelled then
4: Sample a triplet from XL, e.g. (xA1,xB2,xB1),

in the same format as line 3 of Algorithm 1
5: Execute lines 4–9 of Algorithm 1.
6: else
7: if nU ≡ 0 (mod 3) then
8: Sample a triplet from both XL and XU , e.g.

xα,α1 ,xα,α2 ∈ XU and xC,3 ∈ XL.
9: else if nU ≡ 1 (mod 3) then

10: Sample a triplet from both XL and XU , e.g.
xD,4,xD,5 ∈ XL and xβ,β1 ∈ XU .

11: else
12: Sample a triplet from XU only, e.g.

xγ,γ1 ,xγ,γ2 ,xδ,δ1 ∈ XU .
13: end if
14: With a triplet in the same format as line 3 of Algo-

rithm 2, execute lines 4–15 of Algorithm 2.
15: nU ← nU + 1.
16: end if
17: t← t+ 1.
18: until t = tmax.

semi-supervised model (V) again produces more realistic
outputs than the supervised models, demonstrating its gen-
eralisability to complex unseen topologies.

In addition, Figure 14 shows outputs generated using
various combinations of our disentangled latent represen-
tations. As one can observe, our model can indeed produce
latent representations that are disentangled into identity and
pose. This disentanglement is achieved in both synthetic
and realistic datasets.

Finally, Figure 15 shows outputs generated from noisy
inputs. A small but significant random uniform noise is
added to each vertex of the pose input. As shown by the
figure, out models are still able to generate outputs with the
accurate pose and identity across multiple datasets.

C. Limitations and future work
Whilst our method achieves state-of-the-art results in our

experiments, there are still limitations to be addressed in
future work. For instance, we require both pose and iden-
tity inputs in CC during unsupervised learning to have the
same vertex order, as the pose input is used as ground truth
to supervise the model output which also needs to have
the same vertex order as the identity input. There are po-
tential solutions, such as modifying the behaviour of the
correspondence module, or designing order-invariant loss
functions (alternative toLrec) without impacting correspon-
dence learning. However, this is not a serious issue since it
is not impractical to maintain the same ordering within each
identity during real world motion capture.

In semi-supervised learning, as our model can utilise
unlabelled samples, it achieves superior performance com-
pared to prior supervised methods which only have access
to a limited number of labelled samples. Our model also tol-
erates a certain degree of domain gap between the labelled
and unlabelled datasets as our model (V) can handle un-
seen inputs from both SMPL and DFAUST. However, this
might not necessarily hold if the labelled and unlabelled sets
are from drastically different domains, for instance, humans
and animals. This might require fundamentally redesigning
the correspondence module for cross-domain pose transfer.
This is also a challenging problem to tackle due to the lack
of cross-domain ground truths such as output, correspon-
dence, or template pose.



Identity input Pose input NPT (B) 3D-CoreNet (C) Ours (D)
(supervised)

Ours (J)
(unsupervised) Ground truthOurs (G)

(semi-supervised)

Figure 10. Additional qualitative comparison on unseen SMPL inputs. These are additional examples of pose transfer performed using
various methods (labels defined in Table 1). Similar to Figure 5, the first rows show the rendered surfaces and the second rows show the
corresponding point clouds with PMD heatmaps (dark red: high error; dark blue: low error).



Identity input Pose input 3D-CoreNet (M) Ours (N)
(supervised)

Ours (R)
(unsupervised) Ground truthOurs (Q)
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Figure 11. Additional qualitative comparison on unseen SMAL inputs. These are additional examples of pose transfer performed using
various methods (labels defined in Table 1). Similar to Figure 6, the first rows show the rendered surfaces and the second rows show the
corresponding point clouds with PMD heatmaps (dark red: high error; dark blue: low error).



Identity input Pose input 3D-CoreNet (S)
(unsupervised, no LD)

3D-CoreNet (T)
(unsupervised, with LD)

Ours (U)
(unsupervised) Pseudo ground truth3D-CoreNet (C)

(supervised on SMPL)
Ours (V)

(semi-supervised)
Ours (D)

(supervised on SMPL)

Figure 12. Additional qualitative comparison on unseen DFAUST inputs. These are additional examples of pose transfer performed
using various methods (labels defined in Table 1). The first rows show the rendered surfaces and the second rows show the corresponding
point clouds with PMD heatmaps (dark red: high error; dark blue: low error). The pseudo ground truths are generated using SMPL+H.



Identity input Pose input 3D-CoreNet (C)
(supervised on SMPL)

Ours (V)
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Figure 13. Additional qualitative comparison on unseen MG, SMPL, and DFAUST inputs. These are additional examples of pose
transfer performed using various methods (labels defined in Table 1) with inputs from a mixture of different datasets (source dataset
labelled in parentheses).



 (SMPL)

 (SMPL)

Latent pose code

La
te

nt
 id

en
tit

y 
co

de

Correspondence and RefinementFeature extraction

 (DFAUST)

 (DFAUST)

Latent pose code

La
te

nt
 id

en
tit

y 
co

de

Figure 14. Outputs generated from disentangled latent codes. These results are generated by method (V) defined in Table 1 using
various combinations of disentangled latent representations as described in Section 3.2. The vertex orders of x1 and x2 are aligned in order
for their latent codes to be combined and processed by the model correctly.



Identity input Pose input (clean) Pose input (noisy) Output (pose input noisy) Ground truth

(SMPL)(SMPL)

(SMAL)(SMAL)

(DFAUST)(DFAUST)

(DFAUST)(MG)

Method (D)

Method (N)

Method (V)

Method (V)

Figure 15. Outputs generated from noisy inputs. These results are generated from a noisy pose input using various methods (labels
defined in Table 1). The vertices of the pose input are perturbed using random uniform noises. The clean pose inputs are shown here for
reference but are not used as inputs for the model.


