Supplementary Material

MixSynthFormer: A Transformer Encoder-like Structure with Mixed Synthetic
Self-attention for Efficient Human Pose Estimation

1. Computation of Attention Matrix Synthesis

This section presents a detailed computation calculation
of the SynthAttenOP. We use the same notation in the main
paper, and the input has dimension RY*P_ In practice, 7.
is set to 4 or 8, making the cost from SELayer very small.
We ignore the computation from SELayer in the following
computation calculation.

The operations in the attention block can be separated
into two steps: attention calculation, which computes the
attention weights, and feature fusion, which multiplies the
attention weights with values. Table 1 compares the com-
putation in the standard transformer with SynthAttenOP at-
tention generation.

In a standard transformer, the pairwise dot-product at-
tention costs D2. However, with our synthetic attention
weights generation, the cost is reduced to DN, a reduction
of % times. Typically, the number of tokens IV is smaller
than embedding dimension D. By introducing the reduction
factor r, where d = | N/r], the generation cost is reduced
to Dd + Nd and the fusion with value reduced from N2
to d2. In our experiments, 7 is set to 4 or 8, which saves a
considerable amount of computation.

Table 1: Computation in attention matrix generation

Method ‘ Atten Calculation ‘ Fusion
Vanilla D? N2
SynthAttenOp DN N?
SynthAttenOp with r Dd+ Nd d?

2. Dataset and Pose Estimator Descriptions

We use different datasets for different pose estimation
tasks. For 2D pose estimation, we use Sub-JHMDB [4] with
SimplePose [16] as the estimator. For 3D pose estimation,
we use Human3.6M [3] with FCN [12] as the estimator.For
3D body recovery (SMPL-based [10]), we use 3DPW [15]
with SPIN [8], EFT [5] and PARE [7] as estimators, and
AIST++ [9] estimated by SPIN [8]. Below we present the
descriptions of these datasets and estimators.

2.1. Datasets

We utilize the following datasets for pose estimation.
Human3.6M is also used in motion prediction.

Sub-JHMDB. JHMDB [4] is a dataset for 2D human
pose estimations containing 316 short video clips with an
average of 35 frames. We conduct experiments on its subset
Sub-JHMDB. Poses are annotated by 15 keypoints. The
bounding box is calculated from the puppet mask provided
by [11]. We combine the original splitting schemes during
experiments, consistent with previous works [18, 1, 17].

Human3.6M. Human3.6M [3] is a large-scale indoor
dataset with 15 actions from four camera viewpoints. It
comprises 3.6 million frames with 17 annotated joints in
each frame. We follow previous works [12, 17], and train
with the subjects S1, S5, S6, S7, S8, while the subjects S9
and S11 are used for testing.

3DPW. 3DPW [15] is the first in-the-wild dataset con-
taining videos captured from moving phone cameras. It
consists of 60 video sequences with accurate pose annota-
tions and is usually used as the testing set for body recovery
methods.

AIST++. AIST++ [9] is a dancing dataset constructed
from the AIST Dance Video Database [14]. It contains di-
verse and fast-moving poses. It includes 3D keypoint anno-
tations and SMPL [10] parameters for 10.1 million images,
covering 30 actors in nine views. We adopt the same split
setting as [17] in experiments.

2.2. Pose Estimators

To be comparable with [17], we use the following single-
frame pose estimators for the detection of keyframe poses.
However, in practice, more lightweight pose estimators can
be used to further speed up the inference.

SimplePose. SimplePose [16] is a baseline model for
2D pose estimation and pose tracking. It uses ResNet [2] as
backbone and incorporates deconvolutional layers.

FCN. FCN [12] is an MLP-based 2D-to-3D lifting
model that operates along the spatial dimension. The model
estimates 3D poses from 2D joint detections, making it a
simple yet effective option.



SPIN. SPIN [8] combines SMPL [10] optimization in
the training process. It collaborates optimization and re-
gression techniques to better handle human body recovery
tasks.

EFT. EFT [5] is trained on augmented 2D datasets with
high-quality 3D pose fits and has better generalization abil-
ity than SPIN.

PARE. PARE [7] is an occlusion-robust human pose and
shape estimator that can handle partial occlusion with the
usage of the part-guided attention mechanism.

3. Implementation and Training Details

We set different Q for different datasets. Sub-JHMDB
contains shorts video clips, and the Q is set to 1. For long
videos, Q is set to 10 by default. Specially, 3DPW are
in-the-wide videos which may contain many occluded and
shaking cases, so we set the Q to be 5. Table 2 shows all the
parameters.

In addition, inside FFN of MixSynthEncoder, the expan-
sion ratio is set to 2, and a dropout layer with a rate of 0.1
is added to prevent overfitting. 5. in SELayer is set to 4 for
all datasets. We use Adam [6] as the optimizer with an ini-
tial learning rate of 0.001, decayed by 0.97 after each epoch.
All models are trained for 60 epochs.

Table 2: Training parameter settings for different datasets. C, @,
L represent the embedding dimension, the number of keyframes,
and the number of encoder blocks respectively. 7 and rs are the
reduction factors used in temporal and spatial attention matrix syn-
thesis. Batch stands for the training batch size. Interp means the
preliminary recovery method, which can be a traditional interpo-
lator or a learned interpolator. Linear and NN means the interpoal-
tion is done by a linear interpolator and a linear layer respectively.

Dataset ‘ cC @ L ‘ re 7Ts | Batch Interp
Sub-JHMDB | 128 1 5 1 8 16 Linear
H36M 64 10 4| 4 1 256 NN
PW3D 32 5 4 1 1 256 Linear
AIST++ 128 10 5| 4 8 512 NN

4. Experiments
4.1. Inference Time

We evaluate the computation costs and inference time of
different models on various datasets, using the settings pre-
sented in Table 2. For CPU inference, we use an 8-core CPU
Apple M1 Pro chip. For GPU inference, we use NVIDIA
GeForce GTX 1080 Ti. Results are presented in Table 3.

As shown in the table, models using linear interpolation
for the preliminary recovery have similar inference speeds
on both CPU and GPU. In contrast, models using NN inter-
polation run much faster on GPU than on CPU. Models us-

ing a linear layer for interpolation runs less than 0.15ms per
frame on a CPU, which suggests that our model can be in-
tegrated with real-time applications on resource-constrained
devices.

Table 3: Parameters, computation and inference time on GPU and
CPU per frame

Dataset #param  FLOPs Tapru Tecpu

Sub-JHMDB | 048M  0.45M | 0.5Ims 0.65ms

H36M 02IM  0.12M | 0.05ms  0.09ms

PW3D 0.07M  0.03M | 0.09ms 0.09ms

AIST++ 0.58M  0.48M | 0.06ms 0.15ms
4.2. Ablation Study

Different Sampling Strategies. In the main paper, we
use uniform sampling in all experiments. Here we extend
our analysis by examining the performance of the model
trained on uniformly sampled data using three additional
sampling strategies: (i) random sampling (Random): ran-
domly select keyframes; (ii) uniform-random (U-R): di-
vide the whole sequence into equal-length intervals and ran-
domly select one frame in each interval; (iii) random with
first and last frame (R-FL): select the first and last frames of
the entire sequence and randomly select middle keyframes.
Table 4 shows the results.

Despite being trained on uniformly sampled data,
MixSynthFormer demonstrates robust performance with
both U-R and R-FL sampling. This highlights its ability
to recover and refine poses even with varying short inter-
vals between keyframes. However, randomly sampled se-
quences may suffer from long invisible periods that can neg-
atively impact performance.

Table 4: Different sampling strategies on 3DPW estimated by
PARE (MPJPE 78.9/ Accel 25.7).

Strategy | MPIPE | Accel

Uniform 76.5 6.7
Random 80.5 11.0
U-R 75.9 8.9
R-FL 76.9 7.2

Different Interpolation Methods. The performance of
different interpolators can vary based on the dataset being
used. We employ the single-frame pose estimator SPIN to
evaluate the effect of interpolators on 3DPW and AIST++.
Table 5 presents the result.

The results indicate that different interpolators may be
more suitable for specific datasets. MixSynthFormer per-
forms better on 3DPW with a linear interpolator, while a
learned interpolator produces better results on AIST++. The
choice of interpolator may depend on the types of actions



performed in each dataset. Since 3DPW involves daily
life actions, a linear interpolator suffices for initial recov-
ery. Conversely, AIST++ involves complex dancing mo-
tions, which can be better recovered by a learned layer that
can better learn the motion prior.

Table 5: Different Interpolation methods on 3DPW and AIST++
estimated by SPIN. NN means the interpolation is done by a linear
layer.

Dataset ‘ Interp ‘ MPJPE  Accel

NN | 920 81

3DPW ‘ Linear ‘ 91.2 6.8
12 47

AlST+H Linear‘ 719 55

4.3. Generalization Ability

We conducted experiments to evaluate the generalization
ability of MixSynthFormer on different datasets, using vari-
ous interpolators and pose estimators. The testing model is
trained on 3DPW with keyframe poses estimated by PARE.
Linear interpolation is used during training.

In the cross-interpolator tests, as Table 6 shows, we find
that our model can learn the patterns of human motions
to refine coarsely-recovered sequences, and changing the
interpolator does not significantly affect the performance.
Surprisingly, we obtained a smaller acceleration error than
in training when using quadratic interpolation.

Table 6: Cross-interpolator results

Interpolation ‘ MPJPE ‘ Accel

Linear 76.5 6.7
Quadratic 76.5 6.2
Cubic-spline 76.7 6.3

Table 7 shows the results of cross-dataset and cross-
backbone tests. MixSynthFormer can reduce the acceler-
ation error by around 80% for all tested datasets. With
the exception of a slight increase in MPJPE in 3DPW esti-
mated by SPIN, it can reduce the localization error in other
datasets. Therefore, MixSynthFormer has the potential to
serve as a highly-efficient smoothing tool for new data with-
out compromising accuracy.

4.4. Motion Prediction

Table 8 presents the average MPJPE for different actions
in the short-term motion prediction task. Four testing inter-
vals (80, 160, 320 and 400 ms) are used.

Our method outperforms both baselines for all actions in
the extremely short intervals (80 and 160 ms). The near fu-
ture actions are rather predictable, and MixSynthFormer can

Table 7: Cross-dataset and cross-backbone results

Dataset (Estimator) ‘ MPJPE | Accel

3DPW (SPIN) gg'g 364 5;7
3DPW (EFT) zg'i 362'98

1077 | 338
AIST++ (SPIN) 1005 | 59

make relatively accurate predictions through the recover-
refine mechanism. It also performs well on complex ac-
tions containing self-occlusion, such as sitting and taking
photos. However, as the prediction interval enlarges, our
model fails to predict high-frequency actions, such as pos-
ing and discussion, due to the overly-smooth coarse pre-
diction. Nevertheless, MixSynthFormer is still competitive
with state-of-the-art motion prediction models.

5. Limitations and Future Work

The limitations and potential improvements of MixSyn-
thFormer can be analyzed from both the refinement model
design and application perspective. Limitations in the
model design are primarily related to synthetic attention op-
erations (SynthAttenOp):

> The number of parameters and computational com-
plexity of the model are dependent on the input window
size due to the usage of linear layers.

> Attention weights are synthesized by a linear layer
which has a fixed number of weights. When presented with
a sequence of different sizes from training, attention ma-
trices need to be truncated, similar to the learned position
embeddings in transformers.

> The current framework generates only one attention
matrix for each branch, equivalent to one-head in standard
self-attention. To enhance model robustness, it is possible
to generate multiple attention matrices and combine the re-
sults, as in multi-head attention.

> Current framework does not manually emphasize the
importance of keyframes, and the inter-frame relation is
learned by the network. Future research could explore
keyframe-based operations to enhance the influence of
keyframes and improve performance.

Our framework incorporates an existing single-frame
pose estimator for keyframe pose estimation. From an
application perspective, our framework has the following
shortcomings that can be improved upon:

> The performance of the current framework partially re-
lies on the quality of estimated poses. Even though MixSyn-
thFormer has the ability to correct some incorrectly detected
joints. It fails to produce correct joints if the error exceeds
its ability of refining. How to ensure the quality of the



Table 8: Average MPJPE on short-term motion prediction in Human3.6M

Action ‘ Walking ‘ Eating ‘ Smoking ‘ Discussion

| 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
STSGCN [13] 107 168 291 382 | 67 113 226 316 | 7.1 116 223 306 | 97 167 334 450
STGAGCN[I9] | 103 161 288 324 | 64 115 217 252 | 7.1 118 217 243 | 97 171 314 389
Ours 81 147 253 293 | 53 101 194 233 | 56 104 200 241 | 80 157 315 392
Action \ Directions \ Greeting \ Phoning \ Posing

| 80 160 320 400 | 8 160 320 400 | 80 160 320 400 | 80 160 320 400
STSGCN [13] 74 135 292 409 | 124 217 421 545 82 137 268 366 | 99 180 382 526
STGAGCN[I9] | 73 128 303 345 | 11.8 20.1 405 484 | 88 135 255 287 | 101 170 355 451
Ours 57 121 275 335 | 112 209 400 482 | 68 127 246 303 | 111 165 357 465
Action ‘ Purchasing ‘ Sitting ‘ Sitting Down ‘ Taking Photo

| 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
STSGCN [13] 119 213 419 548 | 91 151 298 398 | 144 237 419 538 | 81 141 297 419
STGAGCN[I9] | 119 207 418 476 | 93 144 296 385 | 141 248 400 474 | 85 139 288 351
Ours 103 206 402 498 | 7.8 142 275 337 | 132 224 394 474 | 65 130 260 34.6
Action ‘ Waiting ‘ Walking Dog ‘ Walking Together ‘ Average

| 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
STSGCN [13] 86 147 296 407 | 176 293 526 664 | 86 143 265 351 | 101 17.1 331 383
STGAGCN[I9] | 85 141 298 338 | 170 288 50.1 594 | - - - - | 101 169 325 385
Ours 68 131 270 329 | 157 286 495 594 | 68 127 236 275 | 84 158 305 373

keyframes is a key problem. One possible solution is to use
accurate single-frame pose estimators or to select “good”
frames in the sequence.

> In this work, we demonstrate the adaptability of the
model on motion prediction tasks. future research could ex-
plore how to combine multiple more motion synthesis tasks
into one.

6. Qualitative Results
6.1. Visualization of Synthetic Attention

We present visualizations of the general and reduced
synthetic attention matrices in Figure 1 and 2 respectively.
The first row of each figure shows the synthetic temporal
attention weights, and the second row shows the synthetic
spatial attention weights.

From Figure 1, we can see the temporal attention weights
from the first two layers focus more on the first half of the
sequence and the attention from layer 3 focus on the latter
half. The attention in the last layer focuses on the whole se-
quence. The reduced temporal synthetic attention weights
in Figure 2 are more concentrated. This is because impor-
tant features are more likely to be forwarded incorporating
the reduction factor. Both synthetic spatial attention matri-
ces are sparse, only with a few highlights, as shown in the
second row of figures.

6.2. Visualization of Pose Estimation

2D Pose Estimation. Figure 3 and 4 show the visual-
ization results of the ground truth poses, poses detected by

Layer 1 to 4 from left to right

Figure 1: Visualization of synthetic attention weights on 3DPW.
The first row shows temporal attention and the second row shows

spatial attention.
Layer 1 to 4 from left to right

Figure 2: Visualization of reduced synthetic attention weights on
Human3.6M. The first row shows reduced temporal attention and
the second row shows reduced spatial attention.

SimplePose and poses recovered and refined by MixSynth-
Former respectively. The keyframes are highlighted with
red boxes. From the results, there are two cases: (i) cor-
rect keyframe poses, where the proposed method leverages



PCK 0.05: 72.26 PCK 0.05: 95.05

a) Groundtruth

b) Simplepose

©) MixSynthFormer

Figure 3: Sub-JHMDB visualization - Golf. Poses in the red boxes
are used for recovery. Keyframe poses are correctly estimated.
MixSynthFormer can accurately recover the entire sequence by ex-
ploiting motion continuity.

the motion continuity and generates accurate poses for the
remaining frames; (ii) incorrect keyframe poses, where the
proposed method can refine these poses, as demonstrated in
Figure 4. These findings suggest that the proposed method
has the ability to correct keyframe poses and enhance the
overall performance of pose estimation.

3D Pose Estimation. The visualization results for the
photo action in the Human3.6M dataset are presented in
Figure 5. The poses recovered and refined by the proposed
method exhibit a significantly lower acceleration error and
slightly lower mean per joint position error (MPJPE) com-
pared to FCN. Using FCN estimates poses frame by frame
can cause jitter, which can be addressed through smoothing
techniques such as interpolation. MixSynthFormer is based
on interpolation and are effective in smoothing the sequence
as linear interpolation. Additionally, MixSynthFormer has
the ability to learn motion patterns during training, result-
ing in slightly better performance than linear interpolation.

3D Body Recovery. Figure 6, 7 and 8 show the visu-
alization of different dance motions in the AIST++ dataset.
The blue body indicates the estimated keyframe body shape
and pose. Despite some incorrect detections in the keyframe
poses (first row in figures), MixSynthFormer is able to re-

1) Groundtruth ¢) MixSynthFormer

b) Simplepose

Figure 4: Sub-JHMDB visualization - Push. Poses in the red boxes
are used for recovery. Keyframe poses are noisy. MixSynthFormer
can refine the noisy keyframe poses and recover the whole se-
quence effectively at the same time.

fine the incorrect estimations from the arms and legs. Even
though the single-frame estimator SPIN generates incor-
rect results between the two keyframes, our model esti-
mates poses only utilizing keyframes in a recover-refine
manner and is effective in generating natural-looking poses
sequences with smooth transitions.

Smilarly, MixSynthFormer can use relatively accurate
keyframe poses and recover missing poses by leveraging
temporal redundancy on 3DPW dataset. In Figure 9, our
model generates an intermediate hugging pose from the for-
mer and latter keyframes. Figure 10 demonstrates its abil-
ity of refining keyframe poses. The estimator wrongly esti-
mates the hand positions, one hand going through the palm
of the other, which is not plausible in real life. MixSynth-
Former can refine errors in such cases.
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Figure 5: Human3.6M visualization - Photo. MixSynthFormer can produce smooth motions like interpolation but with lower MPJPE.
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Figure 6: AIST++ visualization - Ballet Jazz. Body in blue are
used for recovery. Three body mesh columns are from the ground
truth data, SPIN estimation and our results respectively.
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Figure 7: AIST++ visualization - Ballet Jazz. The left leg from
SPIN estimation does not match the ground truth, which should be
at a lower position.
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Figure 8: AIST++ visualization - Lock. The left hand from SPIN estimation is in front of the body. MixSynthFormer corrects it to the back
of the body, as in ground truth.

PARE

Figure 9: 3DPW visualization - Warm Welcome. Body in blue are
used for recovery. Three body mesh columns are from the ground
truth data, PARE estimation and our results respectively. PARE
gives a wrong estimation of hugging.

Figure 10: 3DPW++ visualization - Enter Shop. Hands in PARE
estimation are intersected.



]

Figure 11: Failure case due to large keyframe pose estimation er-
rors on AIST++

a) Groundtruth

b) Simplepose

© MixSynthFormer

Figure 12: Failure case due to high-frequency motions on Sub-
JHMDB

Failure Cases. While MixSynthFormer exhibits promis-
ing performance in our experiments, there were also in-
stances of failure cases. For example, if the errors in the
keyframes are too large, as shown in Figure 11, it may fail

Sitting Walking Dog
Figure 13: Visualization of four actions on the short-term motion

prediction. Predictions are drawn in green and purple and ground
truth poses are drawn in red and blue.

to generate correct pose sequences. In this specific case
shown in Figure 11, the person is facing backward in the
ground truth data, but the estimated keyframe poses are fac-
ing forward. Although MixSynthFormer has some ability to
correct for errors, it was unable to generate the correct pose
sequence in such cases with serve wrongly estimated re-
sults. Consequently, the generated poses are facing the side,
indicating such cases exceed the model’s ability to correct.

Another failure case we encountered in our experiments
is related to the keyframe selection. Specifically, we sam-
pled one frame out of every ten frames to save computation
time. However, this lower sampling ratio also introduced
more uncertainty in unsampled frames, as shown in Figure
12. In this case, the person in the video is running, but
MixSynthFormer only generates the transition between the
two given keyframes. Although the generated feet are still
moving, they do not move as fast as in running. To ad-
dress this issue, we suggest increasing the sampling ratio or
adding more keyframes when necessary.

These failure cases highlight the need for developing
more robust and accurate single-frame pose estimation
models, particularly for sequences containing complex and
rapid movements or uncommon dance actions.

6.3. Visualization of Motion Prediction

The short-term motion prediction results, along with the
corresponding ground truth poses, are presented in Figure
13. MixSynthFormer has the ability to learn motion patterns
from the historical sequences and can generate smooth and
plausible predictions. It is worth noting that short-term mo-
tion predictions are relatively predictable because the mo-
tion pattern can be easily captured in the given sequences.
Our model has excellent performance in periodic motions
such as walking and complex actions like sitting. Overall,
the visualized results demonstrate the versatility and effec-
tiveness of MixSynthFormer.
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