
Supplementary Material

1. Implementation details
1.1. Forward Mapping

The warping process of point xo can divided into two
steps:

W⃗ : (xo, θ)→ W⃗s → (xs, θ)→ W⃗nr → (xc) (1)

where xc is a 3D position in canonical volume, θ is the
current human pose in SMPL format. The skeleton-driven
deformation W⃗s, which represents the coarse deformation
produced by joint rotation. It wrap point xo to xs(in canon-
ical space). W⃗nr starts from xs and produces an offset △x
to it, W⃗nr provides the non-rigid effects caused by clothing.
Skeleton Motion The skeletal deformation W⃗s is a kind of
linear blend skinning that is caused by skeletal motion and
can be represented as:

W⃗s(xo, θ) =

∑24
i=1w⃗i(xo)(R⃗ixo + t⃗i)∑24

i=1 w⃗i(xo)
(2)

w⃗i(x0) is the blending weight of xo corresponding to i-th
bone. We choose an explicit volume V̂ under the canonical
space to store these value, wi = V⃗i(R⃗ixo+ t⃗i), R⃗i, t⃗i can be
explicitly computed from body pose θ. We refer the reader
to [6] for more details.
Non-rigid Motion. The W⃗nr is considered as a offset △x
to the skeleton-driven result xs. To be specific, point xo

is warped by W⃗s to the skeleton-driven position xs. Then,
the non-rigid motion MLP estimates the offset to the xs and
gets the final position xc = xs +△x in canonical space.

W⃗nr : (xs, θ)→△x (3)

1.2. Canonical decomposition network

In Fig. 1 and Fig. 2 we show the detailed architecture of
the canonical decomposition network.

We use an 8-layer MLP with width = 256 following
NeRF [5]. The network takes positional encoding γ(xo)
as input and output normal n, color c, density θ and BRDF
b. We apply a skip connection that concatenates γ(xo) to
the fifth layer. We adopt ReLU activation after each fully
connected layer. The BRDF decoder takes the latent feature
h and outputs BRDF b.

Figure 1. The network architecture of canonical decomposition
network. Our network takes positional encoding γ(xo) in the
canonical space as input and output normal nc, color c, density
θ, and latent feature h. The inverse gradient is calculated as weak
supervision. The latent feature h is used for estimating BRDF pa-
rameters.

Figure 2. The network architecture of BRDF decoder network.
The network takes the latent feature in the canonical space and
outputs BRDF parameters.

1.3. Details about training

Losses: For the photometric loss and the re-render loss,
MSE and LPIPS are employed. We choose VGG as the
backbone of LPIPS. We apply adaptive weights

−→
λ for the

photometric loss and
←−
λ for the re-render loss. We set

−→
λ = 0.9

iter
5000 ,

←−
λ = 1 −

−→
λ , λm = 10 and λs = 0.0005

for ZJU-Mocap and λs = 0.0001 for synthetic dataset.

Progressive training: Our network uses inverse gradient as
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Figure 3. Decomposition and relighting result on the dynamic human. We show the addition decomposition and relighting result of 3
subjects (377, 386, 393) on the ZJU-Mocap dataset.

weak supervision. The normal loss can be described as:

Ln = λn

∥∥∥∥no − (− ∇xσ

∥∇xσ∥
)

∥∥∥∥ (4)

Where no is the final normal predicted by our network.
We apply an adaptive weight λn to the normal loss and
set different values for different datasets. For the ZJU-
Mocap dataset, we set λn = 0.05, (iteration < 20000)
and λn = 0.2, (iteration > 20000). For the synthetic
dataset, due to the error of the initial estimated SMPL pa-
rameters, we set λn to be 0.01 and 0.05 in the two stages,
respectively.

Our work employs the inverse gradient prior to initializ-
ing the network and adopt an MLP network Fnc

to predict
the normal nc in canonical space: (Eq. (5)):

nc =

{
− ∇xσ

∥∇xσ∥ step <= t;

Fnc(x, θ) step > t;
(5)

We set different values for t when training different
datasets. In general, the larger the t is, the more accurate the
normal and metalness parameters, but it will lead to over-
fitting, and the network will perform poorly in some light
conditions. We set t = 20000 on the ZJU-Mocap dataset
(t = 20000 for subject 392) and t = 50000 on the Syn-
thetic dataset.
Training: We use 64 samples per ray and regularize the
fourth layer of the BRDF decoder network with a L2 norm
with a scale of 0.01. The network is trained on 4 NVIDIA
Tesla V100 GPUS for two days (400K iterations).

2. Results on ZJU-Mocap Dataset
For ZJU-MoCap, we trained models for six subjects

(313, 377, 386, 387, 392, 393). We use images captured
by camera one as input and directly apply camera matri-
ces, body pose, and segmentation provided by the dataset.

Fig. 3 shows the additional decomposition and relighting re-
sults on the dynamic human. Our method can decompose
a dynamic human into normal and plausible BRDF param-
eters and re-render the humans in different illuminations.
Fig. 5 shows the additional novel view normal map and re-
rendered results. Our method can render the decomposed
parameters and re-light the human in free viewpoints. In
the supplementary video, we also provide a detailed video
comparison with Relighting4D and Relighting4DS and ani-
mated results. The results show that our method can provide
a more accurate normal and re-rendered result and outper-
forms Relighting4D and Relighting4DS. Fig. 4 shows the
visual comparison with HumanNeRF, our method is capa-
ble of relighting under unseen illuminations while Human-
NeRF can’t.

Figure 4. Visual comparison with HumanNeRF. Our method can
relighting the dynamic human under unseen illuminations.

3. Details about Synthetic Dataset

To further validate our method. We build a challeng-
ing synthetic dataset with complex actions. The synthetic



Figure 5. Novel view results on ZJU-Mocap dataset. We show normal maps and re-rendered novel view results on 3 subjects (377, 386,
393) on the ZJU-Mocap dataset.

dataset uses publicly available 3D characters and is driven
using dance movements [2]. The dataset is rendered using
Blender engine under [3] eight different light conditions.

3.1. Implementation Details

The synthetic dataset is re-rendered using publicly avail-
able HDRI maps [1]: courtyard, moonless golf, nature re-
serve forest, photo studio, portland landing pad, spruit sun-
rise, studio small, venice sunset. Each monocular video
consists 510 frames. We choose the one rendered un-
der photo studio for training, and others for evaluation
(Fig. 6 and Fig. 7). We use VIBE [4] to estimate the body
pose/camera parameters.

Figure 6. We chose Brian as the character and animated using Tut
hip hop dance. The whole network is trained using video rendered
under photo studio.

3.2. Re-rendered results

In this section, we show the re-rendered results over 8
environments (Fig. 8) light conditions. Our method gives
a result that is close to the true value in all ambient light.
Notice that there are some highlights as well as hands that
do not work so well. The reasons for these errors are the

Figure 7. Visualization of evaluation datasets and normal map.

overly complex dance movement poses and the poor esti-
mation of the initial SMPL model. But the rendering is still
very reasonable in terms of the overall effect.

Figure 8. More qualitative results on the synthetic dataset. Al-
though the movement of characters throughout the video is com-
plex. Our method still gives plausible re-lighting effects. The rea-
sons for some of the poor details are the complex motion, and the
initialized SMPL model needs to be more accurate.



3.3. Normal Prior

Here we show the visual re-rendered result and normal
of different normal estimation methods (re-rendered result
under pose ’courtyard’) (Fig. 9). Our method combines the
advantages of inverse gradient and MLP estimating, which
can give out the most reasonable result.

Figure 9. Visualization of different normal estimating approaches.
Our method, which uses an MLP to estimate normal and inverse
gradient as weak supervision gives the most reasonable result.

3.4. Inverse mapping

Fig. 10 shows the visual result of models trained with or
without Inverse mapping network. The result is re-rendered
under ’venice sunset.’

Figure 10. Visualization of different models trained with or with-
out inverse mapping network. The inverse mapping network can
build point-to-point connections, which work well when the mo-
tion is complex.

3.5. Failure case

As we mentioned before, due to the complexity of the
motion, our method may have errors in some scenes with
complex hand movements. As shown in the figure, since the
3D human pose and shape estimation algorithm cannot give
an accurate prediction of the distal joints, the re-rendering
results may have an impact during complex motions. In
addition, some of the unreasonable highlights given by the
Blender engine may also affect the results (Fig. 11). In addi-
tion, the Blender engine could not model non-rigid motion,
which causes the normal processed by our method on the
synthetic dataset is not as good as the real dataset.

Figure 11. Visualization of failure case and causes.
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