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Overview
In this document, we further demonstrate the effectiveness of the proposed spatially-adaptive feature modulation and the

LayerNorm layer in Section 1. Then, we evaluate our method with the challenge winners in Section 2. We further compare
the proposed method with ViT-based lightweight SR models and classical performance-oriented SR methods in Section 3
and Section 4, respectively. Next, we make some notes on the Urban100 dataset in Section 5. Finally, we show more visual
comparisons in Section 6.

1. Ablations of the spatially-adaptive feature modulation and the LayerNorm
Effectiveness of the spatially-adaptive feature modulation. As described in the main paper, the proposed spatially-adaptive
feature modulation layer consists of three components: feature modulation (FM), multi-scale representation (MR), and fea-
ture aggregation (FA). To intuitively illustrate what the SAFM layer learns, we show some learned features in Figure 1,
where the corresponding features are extracted before the upsampling layer. Figure 1 demonstrates that the deep features
learned with SAFM layers contain much richer feature information and attend to more high-frequency details, facilitating the
reconstruction of high-quality images.
Effect of scales in the spatially-adaptive feature modulation. We evaluate the effect of features at different scales in the
spatially-adaptive feature modulation (SAFM) layer on the ×4 DIV2K validation set. Table 1 shows that removing any scale
information deteriorates the reconstruction performance.
Effect of the LayerNorm layer. We show the visual results of different normalizations in Figure 2. As stated in the main
paper, we obtained the results for the Frozen BatchNorm [5] and without the LayerNorm [2] before the training collapse.
The model with BatchNorm layers generates images with unpleasant artifacts because it involves the estimated mean and
variance of the entire training dataset during testing. The artifacts can be alleviated when we fix these estimates, as shown
in Figure 2(c). Figure 2(d) and (f) show that applying normalization in the channel dimension can avoid the occurrence of
artifacts. Compared to the L2 normalization, the model with LayerNorm layers produces more precise results. We, therefore,
introduce LayerNorm layers for stable training and well convergence. The reasons behind the LayerNorm remain to be
further investigated.

2. Comparison with the challenge winners
We further compare our method with solutions of the challenge champion, i.e., RFDN (winner of AIM 2020 Efficient

Super-Resolution Challenge [17]) and RLFN (winner of NTIRE 2022 Efficient Super-Resolution Challenge [10]). Table 2
demonstrates that our approach obtains a noticeable improvement in all measures except the running time. Table 5 of the
main paper shows that our slower running time is mainly due to the use of LayerNorm [2], which requires the mean and
standard deviation of the input features in the inference phase. Without LayerNorm, the runtime improves to 8.35ms, which
is very close to the speed of RLFN. As described in Section 1, however, the importance of LayerNorm prevents us from
removing this module directly. We will explore feasible alternatives in our future work.
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(a) LR input

(b) w/o SAFM (c) w/o FM & MR & FA (d) w/o FM & MR (e) w/o FM & FA

(f) w/o FA (g) w/o MR (h) w/o FM (i) w/ SAFM

Figure 1. Illustration of the learned deep features from ablations in the SAFM. We average the features before the upsampling layer
in the channel dimension and show the corresponding results. The proposed SAFM layer includes three components: feature modulation
(FM), multi-scale representation (MR), and feature aggregation (FA). (h) indicates that the model pays less attention to the high-frequency
regions without the feature modulation. (g) shows that the model fails to capture long-range information without the multi-scale represen-
tation. (f) illustrates the necessity of aggregating multi-scale features. The comparison of (i) with (b)-(h) suggests that the proposed method
with the SAFM layer yields a finer feature representation with clearer structures that pays more attention to high-frequency details.

Table 1. Effect of scales in the SAFM. We evaluate the effect of features at different scales in the SAFM layer on the ×4 DIV2K validation
set. The results show that removing any scale information affects the reconstruction performance.

Variants SAFMN w/o Scale 8 w/o Scale 8&4 w/o Scale 8&4&2
DIV2K val 30.43/0.8372 30.39/0.8362 30.37/0.8357 30.34/0.8350

Table 2. Efficiency comparison with the challenge winners on ×4 SR. #GPU Mem. and #Avg. Time denote the maximum GPU memory
consumption and the average running time of the inference phase, respectively. #FLOPs, #Acts and #Avg. Time are computed on an LR
image with a resolution of 320× 180 pixels. Our SAFMN obtains comparable performance and a better trade-off between reconstruction
performance and model complexity.

Methods #Params [K] #FLOPs [G] #Acts [M] #GPU Mem. [M] #Avg.Time [ms] B100 [PSNR/SSIM]
RFDN [13] 433.45 23.82 98.46 176.75 7.23 27.60/0.7368
RLFN [7] 543.74 29.88 111.17 145.69 7.35 27.60/0.7364

SAFMN (Ours) 239.52 13.56 76.70 65.26 10.71 27.58/0.7359

3. Comparison with ViT-based lightweight SR methods
We compare the ×4 SR performance with ViT-based methods including ESRT [14], SwinIR-light [11], and ELAN-

light [18]. We calculate their efficiency metrics in officially released codes with the fvcore library under super-resolving
inputs to 1280 × 720 pixles. As these ViT-based lightweight SR methods have parameter sizes over 600K, we scale up
the proposed SAFMN with 48 channels and 12 FMMs to 610K for a fair comparison. Table 3 shows that our SAFMN-
c48n12 produces competitive results with much lower computational complexity. Compared to SwinIR-light, our method
has 316.53K fewer parameters and is nearly 7× faster.

4. Comparison with classical SR models
To verify the scalability of SAFMN, we further compare the large version of SAFMN, which has 16 FMMs with 128

channels, with the state-of-the-art classical SR methods, including EDSR [12], RCAN [19], SAN [3], HAN [15], SwinIR [11].
Table 4 shows that our SAFMN shows significant advantages in terms of model efficiency compared to the evaluated CNN-
based methods and obtains competitive reconstruction performances on five public benchmarks, benefiting from its capability
of multi-scale feature modulation.

https://detectron2.readthedocs.io/en/latest/modules/fvcore.html


Table 3. Comparison with ViT-based lightweight SR methods. Our SAFMN-c48n12 produces competitive results with much lower
computational complexity.

Methods #Params [K] #FLOPs [G] #Acts [G] #GPU Mem. [M] #Avg.Time [ms] Set14/Manga109 [PSNR]
ESRT [14] 751.77 298.32 6.92 6747.72 115.09 28.69/30.75
SwinIR-light [11] 929.63 61.69 1.28 368.19 130.28 28.77/30.92
ELAN-light [18] 640.39 54.12 1.09 240.40 41.70 28.78/30.92
SAFMN (Ours) 239.52 13.56 0.077 65.26 10.71 28.60/30.43
SAFMN-c48n12 (Ours) 613.10 34.84 0.149 90.14 16.61 28.77/30.93

Table 4. Classical image SR results. #Params and #FLOPs are measured under the setting of upscaling SR images to 1280 × 720 pixels
on all listed scales. The proposed SAFMN achieves comparable performances with significantly less computational and memory costs.

Scale Methods #Params [M] #FLOPs [G] Set5 Set14 B100 Urban100 Manga109

×2

EDSR [12] 40.73 9387 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
RCAN [19] 15.45 3530 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786

SAN [3] 15.86 3050 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792
HAN [15] 63.61 14551 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785

SAFMN (Ours) 5.56 1274 38.28/0.9616 34.14/0.9220 32.39/0.9024 33.06/0.9366 39.56/0.9790
SwinIR [11] 11.75 2952 38.42/0.9623 34.46/0.9250 32.53/0.9041 33.81/0.9427 39.92/0.9797

×3

EDSR [12] 43.68 4470 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
RCAN [19] 15.63 1586 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

SAN [3] 15.90 1620 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494
HAN [15] 64.35 6534 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500

SAFMN (Ours) 5.58 569 34.80/0.9301 30.68/0.8485 29.34/0.8110 28.99/0.8679 34.66/0.9504
SwinIR [11] 11.94 1363 34.97/0.9318 30.93/0.8534 29.46/0.8145 29.75/0.8826 35.12/0.9537

×4

EDSR [12] 43.90 2895 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
RCAN [19] 15.59 918 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173

SAN [3] 15.86 937 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169
HAN [15] 64.20 3776 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177

SAFMN (Ours) 5.60 321 32.65/0.9005 28.96/0.7898 27.82/0.7440 26.81/0.8058 31.59/0.9192
SwinIR [11] 11.90 774 32.92/0.9044 29.09/0.7950 27.92/0.7489 27.45/0.8254 32.03/0.9260

Table 5. Quantitative comparison results on the Urban100 dataset. Our proposed method performs less well in PSNR/SSIM but is
comparable to IMDN and LAPAR in perceptual metrics, including NIQE and LPIPS.

Scale Methods #Params [K] #FLOPs [G] #Acts [M] PSNR SSIM NIQE LPIPS

×2
IMDN [4] 694 159 423 32.17 0.9283 4.59 0.1132

LAPAR-A [9] 548 171 677 32.17 0.9250 4.55 0.1129
SAFMN (Ours) 228 52 299 31.84 0.9256 4.60 0.1138

×3
IMDN [4] 703 72 190 28.17 0.8519 5.21 0.2136

LAPAR-A [9] 594 114 505 28.15 0.8523 5.21 0.2163
SAFMN (Ours) 233 23 134 27.95 0.8474 5.28 0.2134

×4
IMDN [4] 715 41 108 26.04 0.7838 5.69 0.2879

LAPAR-A [9] 659 94 452 26.14 0.7871 5.63 0.2868
SAFMN (Ours) 240 14 77 25.97 0.7809 5.79 0.2881

5. Some notes on the Urban100 dataset
As shown in Table 5, the proposed SAFMN obtains a weak PSNR performance on the Urban100 dataset compared to

other state-of-the-art methods, e.g., IMDN [4] and LAPAR-A [9]. The slight local luminance differences are responsible for
these results. Since PSNR measures pixel-level distances rather than overall structure, slight differences in the luminance
channel could lead to significant differences in PSNR. Furthermore, we visually compare images with a significant PSNR gap
between our SAFMN and IMDN and observe no detectable changes in perceptual quality. Thus, we reevaluate these results
using two commonly-used perceptual metrics: NIQE and LPIPS. Table 5 lists the quantitative results, and the proposed
method achieves comparable performance to IMDN and LAPAR-A in terms of NIQE and LPIPS.

6. More visual results
In this section, we present additional visual comparisons with state-of-the-art methods [6, 1, 8, 4, 16] on the ×4 Urban100

dataset. Figure 3 shows that the proposed algorithm generates clearer images with finer detailed structures than those by
state-of-the-art methods.



(a) GT (b) BatchNorm [5] (c) Frozen BatchNorm [5]

(d) L2 normalization (e) w/o LayerNorm [2] (f) w/ LayerNorm [2]
Figure 2. Visual results of different normalization methods. The proposed model with LayerNorm layers reconstructs better images.



(a) HR patch (b) Bicubic (c) VDSR [6] (d) ShuffleMixer [16]

img078 from Urban100 (e) LapSRN [8] (f) CARN [1] (g) IMDN [4] (h) SAFMN

(a) HR patch (b) Bicubic (c) VDSR [6] (d) ShuffleMixer [16]

img091 from Urban100 (e) LapSRN [8] (f) CARN [1] (g) IMDN [4] (h) SAFMN

(a) HR patch (b) Bicubic (c) VDSR [6] (d) ShuffleMixer [16]

img092 from Urban100 (e) LapSRN [8] (f) CARN [1] (g) IMDN [4] (h) SAFMN

Figure 3. Visual comparisons for ×4 SR on the Urban100 dataset. Our method generates images with clearer structures.
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