Spatio-temporal Prompting Network for Robust Video Feature Extraction
Supplementary Material

Guanxiong Sun\(^1\), Chi Wang \(^1\), Zhaoyu Zhang \(^1\), Jiankang Deng \(^2\), \(^3\), Stefanos Zafeiriou \(^3\), Yang Hua\(^1\)

\(^1\)Queen’s University Belfast \(^2\)Huawei UKRD \(^3\)Imperial College London
{gsun02, cwang38, zzhang55,Y.Hua}@qub.ac.uk, {j.deng16,s.zafeiriou}@imperial.ac.uk

We introduce detailed implementations of STPN. We use Python 3.7 and PyTorch 1.8.1 \([8]\), and conduct experiments on NVIDIA Tesla V100-32GB GPUs.

1. STPN on CVT

CVT \([10]\) is the default transformer encoder used in MixFormer \([1]\) for visual object tracking. The architecture of CVT is slightly different from other transformer encoders \([6, 4]\) mainly because CVT uses convolutional layers to generate down-scaled feature maps whereas other encoders are down-scaled by reshaping and concatenating. As a result, the predicted DVP by STPN should also be compatible with the convolution-based downscale layers in CVT.

The convolution-based downscale layer in CVT is implemented by Conv2d layers with kernel size 3\(\times\)3 and stride 2. The predicted dynamic video prompts (DVPs) consist of \(N_P\) embeddings. To enable Conv2d on DVPs, we increase \(N_P\) from the default value of 5 to 9, so that we can reshape the DVPs to a 3\(\times\)3 feature map. The reshaped DVPs are then passed into the convolution-based downscale layer to generate down-scaled embeddings. Additionally, we add zero padding of size 2 on the reshaped DVPs before passing it to the Conv2d layer to ensure the output DVPs have the same size as the input. Therefore, the input size and the output size of DVPs are the same which is 3x3. Finally, the output DVPs are reshaped back to 9 embeddings and then prepended with down-scaled feature maps for the following transformer layer.

2. Training and Inference

Details of hyper-parameters we used for video object detection (VOD), video instance segmentation (VIS), and visual object tracking (VOT) are listed in the Table 1. For VOD and VIS, following the training protocols in FasterRCNN \([9]\) and MinVIS \([2]\), the whole model is trained end-to-end in a single stage. In contrast, following the training protocol in MixFormer \([1]\), the training process is divided into two stages. The parameters in the score prediction head \([1]\) are trained in the second stage. All other parameters including the DVP predictor and CVT backbone are trained in the first stage.

3. Grad-CAM Details

We use the EigenCAM \([7]\) for visualising the class activation maps (CAM) for STPN on the task of video object detection. During the visualisation progress, two extra modifications are needed compared with the normal grad-cam visualisation for the task of image classification. Firstly, we need to formulate a customised “reshape” transformation that integrates the stored activations in the FasterRCNN \([9]\) output features (from the feature pyramid network (FPN) \([5]\)). Specifically, we re-scale all feature levels of FPN to the same scale, the scale of 64\(\times\) in our implementation. Secondly, we need to construct a “target” function that generates CAMs optimised for specific bounding boxes, such as their score or their intersection over union with the original bounding boxes. More implementation details can be found in the GitHub page \(^1\).

4. t-SNE Details

Following the protocol in FGFA \([11]\), we categorise the ImageNet VID Val set into three groups: fast-speed, medium-speed, and slow-speed subsets. The definition is based on the Motion Intersection over Union (mIoU) metric which measures the IoU of the same object in the nearby frames (±10 frames). The specific thresholds are mIoU > 0.9 (slow), mIoU \(\in[0.7, 0.9]\) (medium), and mIoU < 0.7 (fast). Slow-speed subset usually has higher quality than the medium-speed and the fast-speed subsets. Therefore, STPN improves the FasterRCNN detector more significantly in the medium-speed and fast-speed subsets.

\(^1\)https://github.com/jacobgil/pytorch-grad-cam
Table 1. Details of hyper-parameters for training STPN on three different video tasks, i.e., video object detection (VOD), video instance segmentation (VIS), and visual object tracking (VOT). E and I denote epoch and iteration, respectively.

<table>
<thead>
<tr>
<th>Task</th>
<th>Optimizer</th>
<th>Batch Size</th>
<th>Base LR</th>
<th>LR Drop Rate</th>
<th>LR Schedule</th>
<th>Total</th>
<th>Weight Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOD</td>
<td></td>
<td>8</td>
<td>0.000025</td>
<td>6E</td>
<td>9E</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>VIS</td>
<td>ADAMW [3]</td>
<td>64</td>
<td>0.0001</td>
<td>400E</td>
<td>6000I</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>VOT$_{stage1}$</td>
<td>32</td>
<td>0.001</td>
<td>0.1</td>
<td>400E</td>
<td>500E</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>VOT$_{stage2}$</td>
<td>32</td>
<td>0.0001</td>
<td></td>
<td>30E</td>
<td>40E</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

t-SNE requires a classification label for each sample feature. So we need to convert the feature maps within bounding boxes into sample features. Given a bounding box, we use the RoIPooling [9] operation to generate a sample feature (proposal). Specifically, we use the ground-truth bounding boxes of the ImageNet VID Val set to generate sample features. The labels of each sample feature are set as the label of the corresponding ground-truth bounding box. In this way, we can compare the quality of feature maps obtained by FasterRCNN with and without STPN.

References