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A. Theoretical Proof
For the sake of proof, we assume that f(x, θ) : RP → R is the neural network function with one-dimensional output. For

any D and fD(θ), dataset and neural network function satisfy ||xi|| ≤ 1, |yi| ≤ M , |fD| ≤ M . As for the loss function, we
use the mean squared error loss function LD(θ) =

1
n

∑n
i=1(f(xi, θ)− yi)

2.

A.1. The Proof of Theorem 1

Theorem 1 ∀1 > ϵ > 0, j = 1, ..., P , ∃M1 such that with probability at least (1− ϵ) over randomly initialized parameters
θ0,

M1

(16M2 −M1) +
16M2

GSNR(θ0
j )

≤ gsnr(θ0j ) (1)

where M is the upper bound of the output.

Proof. For randomly initialized parameters θ0, the performance of the neural network is probably not good. So there exist
M1 such that

P
{
E(x,y)∼Z

(
(f(x, θ0)− y)2(g′)2(x, θ0j )

)
> M1

(
E(x,y)∼Z(g

′)2(x, θj)
)}

> 1− ϵ (2)

over randomly initialized parameters θ0. Because g(x, y, θj) =
∂L
∂f (x, y, θ)(g

′)2(x, θj), it can be inferred that

P
{
E(x,y)∼Zg

2(x, y, θj) > M1(E(x,y)∼Z(g
′)2(x, θj))

}
> 1− ϵ (3)

and |∂L∂f | = 2|f(x, θ)− y| ≤ 2|f(x, y, θ)|+ 2|y| ≤ 4M , then

GSNR(θ0j ) (4)

=
(E(x,y)∼Zg(x, y, θ

0
j ))

2

(E(x,y)∼Zg2(x, y, θ
0
j ))− (E(x,y)∼Zg(x, y, θ

0
j ))

2
(5)

=
(E(x,y)∼Z(

∂L
∂f )g

′(x, θ0j ))
2

(E(x,y)∼Zg2(x, y, θ
0
j ))− (E(x,y)∼Z(

∂L
∂f )g

′(x, θ0j ))
2

(6)

(7)
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≤
16M2(E(x,y)∼Zg

′(x, θ0j ))
2

M1(E(x,y)∼Z(g′)2(x, θ
0
j ))−M2(E(x,y)∼Zg′(x, θ

0
j ))

2
(8)

=
16M2

M1
(E(x,y)∼Z(g′)2(x,θ0

j ))

(E(x,y)∼Zg′(x,θ0
j ))

2 −M2

(9)

=
16M2

−(M2 −M1) +
M1

gsnr(θ0
j )

(10)

where M2 is a contstant for fixed θ0 satisfying 16M2 ≥ M2 ≥ M1 and (E(x,y)∼Zg
2(x, y, θ0j ))−(E(x,y)∼Z(

∂L
∂f )g

′(x, θ0j ))
2 >

M1(E(x,y)∼Z(g
′)2(x, θ0j ))−M2(E(x,y)∼Zg

′(x, θ0j ))
2 > 0. Such constant exists because

(E(x,y)∼Zg
2(x, y, θ0j ))−

(
E(x,y)∼Z(

∂L
∂f

)g′(x, θ0j )

)2

> 0 (11)

(E(x,y)∼Zg
2(x, y, θ0j ))−

(
E(x,y)∼Z(

∂L
∂f

)g′(x, θ0j )

)2

> M1(E(x,y)∼Z(g
′)2(x, θ0j ))− 16M2(E(x,y)∼Zg

′(x, θ0j ))
2 (12)

E(x,y)∼Z

(
(
∂L
∂f

)2(g′)2(x, θ0j )

)
> M1

(
E(x,y)∼Z(g

′)2(x, θj)
)

(13)

it implies

gsnr(θ0j ) (14)

≥ M1

(M2 −M1) +
16M2

GSNR(θ0
j )

(15)

≥ M1

(16M2 −M1) +
16M2

GSNR(θ0
j )

(16)

□

A.2. The Proof of Theorem 2

Theorem 2 Under Assumption 1, for fixed initialization parameters θ0, if ▽2
θLD(θ

t) is semi-positive definite matrix,
E(x,y)∼Z |(f(x, θt)− y)| is small enough, ∀t = 1, 2..., there exist 0 < αt < 1 and 1√

nαtgsnr(θ0
j )

< r < 1, j = 1, 2...P , such

that ,

λmax(▽
2
θLD′(θt)) ≤ n(1 + r)2

(1− r)2
λmax(▽

2
θLD(θ

t)) (17)

with probability at least

1−
P∑

j=1

2n

r2αtgsnr(θ0j )
(18)

over randomly chosen possible distributions for all training sets D and validation sets D′ which have the same number of
data.

Proof. For the Hessian matrix of the loss function,

▽2
θLD(θ

t) (19)

= ▽2
θ

1

n

n∑
i=1

(f(xi, θ
t)− yi)

2 (20)

=
2

n

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T +
2

n

n∑
i=1

(f(xi, θ
t)− yi)(▽

2
θf(xi, θ

t)) (21)



Within the bounded area ||▽2
θf(xi, θ

t)||F < M3, when 2
n

∑n
i=1 |(f(xi, θ

t)− yi)| is small enough, we have

|| 2
n

n∑
i=1

(f(xi, θ
t)− yi)(▽

2
θf(xi, θ

t))||F (22)

≤ 2

n

n∑
i=1

|(f(xi, θ
t)− yi)|||(▽2

θf(xi, θ
t))||F (23)

≤ M3
2

n

n∑
i=1

|(f(xi, θ
t)− yi)| → 0 (24)

So

▽2
θLD(θ

t) ≈ 2

n

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T (25)

The maximum eigenvalue is

λmax(▽
2
θLD(θ

t)) (26)

≈ λmax

(
2

n

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T

)
(27)

≥ λ̄

(
2

n

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T

)
(28)

=
2

n2
tr

(
n∑

i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T

)
(29)

=
2

n2

n∑
i=1

||▽θf(xi, θ
t)||2 (30)

=
2

n2

n∑
i=1

P∑
j=1

(g′)2(xi, θ
t
j) (31)

where tr(·) means the trace of matrix, λ̄(·) means average eigenvalue, ▽2
θLD(θ

t) need to be a semi-positive definite matrix.
Also,

λmax(▽
2
θLD(θ

t)) (32)

≈ λmax(
2

n

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ

t))T ) (33)

≤ 2

n
||

n∑
i=1

(▽θf(xi, θ
t))(▽θf(xi, θ))

T ||F (34)

≤ 2

n

n∑
i=1

||(▽θf(xi, θ
t))(▽θf(xi, θ

t))T ||F (35)

=
2

n

n∑
i=1

||▽θf(xi, θ
t)||2 (36)

=
2

n

n∑
i=1

P∑
j=1

(g′)2(xi, θ
t
j) (37)

For any two independent datasets D = {(xi, yi)
n
i=1} ∼ Zn, D′ = {(x′

i, y
′
i)

n
i=1} ∼ Zn. For any x, by chebyshev’s theorem,

P{|g′(x, θtj)− E(x,y)∼Zg
′(x, θtj)| ≤ δ} ≥ 1−

V ar(x,y)∼Zg
′(x, θtj)

δ2
(38)



By letting δ = r|E(x,y)∼Zg
′(x, θtj)|

P{|g′(x, θtj)− E(x,y)∼Zg
′(x, θtj)| ≤ r|E(x,y)∼Zg

′(x, θtj)|} ≥ 1− 1

r2gsnr(θtj)
(39)

Through independence, with probability at least (
∏P

j=1(1−
1

r2gsnr(θt
j)
))2n, for i = 1, ..., n, j = 1, ..., P ,

(1− r)2(E(x,y)∼Zg
′(x, θtj))

2 ≤ (g′)2(x′
i, θ

t
j) (40)

≤ (1 + r)2(E(x,y)∼Zg
′(x, θtj))

2 (41)

(1− r)2(E(x,y)∼Zg
′(x, θtj))

2 ≤ (g′)2(x′
i, θ

t
j) (42)

≤ (1 + r)2(E(x,y)∼Zg
′(x, θtj))

2 (43)

⇒ (g′)2(xi, θ
t
j) ≤

(1 + r)2

(1− r)2
(g′)2(x′

i, θ
t
j) (44)

Then

λmax(▽
2
θLD′(θt)) (45)

≤ 2

n

n∑
i=1

P∑
j=1

(g′)2(x′
i, θ

t
j) (46)

≤ 2

n

(1 + r)2

(1− r)2

n∑
i=1

P∑
j=1

(g′)2(xi, θ
t
j) (47)

≤ n(1 + r)2

(1− r)2
λmax(▽

2
θLD(θ

t)) (48)

∀1 > ϵ1 > 0, E(x,y)∼Z |(f(x, θt)−y)| is small enough means with probability at least (1− ϵ1), 2
n

∑n
i=1 |(f(xi, θ)−yi)| and

2
n

∑n
i=1 |(f(x′

i, θ)− y′i)| is small enough. By the continuity of gsnr(θj), j = 1, ..., P , there exists a neighborhood B(θ0) of
θ0 such that θ1, ..., θt ∈ B(θ0), αt be the constant satisfing

gsnr(θj) ≥ αtgsnr(θ0j ), j = 1, ..., P (49)

∀θ ∈ B(θ0). When ϵ1 → 0, (1− ϵ1)(
∏P

j=1(1−
1

r2gsnr(θj)
))2n will be larger than 1−

∑P
j=1

2n
r2αtgsnr(θ0

j )
. So with probability

at least 1−
∑P

j=1
2n

r2αtgsnr(θ0
j )

over randomly chosen possible distributions for all training sets D and validation sets D′,

λmax(▽
2
θLD′(θt)) ≤ n(1 + r)2

(1− r)2
λmax(▽

2
θLD(θ

t)) (50)

□

A.3. The Proof of Theorem 3

Theorem 3 Under Assumption 1, for fixed initialization parameters θ0, if the learning rate η is small enough, ∀t = 1, 2...,
there exist 0 < αt < 1 and 1√

nαtgsnr(θ0
j )

< r < 1, j = 1, 2...P , such that,

LD(θ
t+1)− LD(θ

t) < −ηαt(1− r)2(
∂LD

∂fD
(θt))2ED∼Zn(

P∑
j=1

(g′D(θ
0
j ))

2)

with probability at least

1−
P∑

j=1

1

nr2αtgsnr(θ0j )
(51)

over randomly chosen possible distributions for all training sets D.



Proof. Because the learning rate λ is small enough,

LD(θ
t+1)− LD(θ

t) (52)

= −η(▽θLD(θ
t))T (▽θLD(θ

t)) +O(λ2) (53)

= −λ(
∂LD

∂fD
(θt))2(▽θfD(θ

t))T (▽θfD(θ
t)) +O(λ2) (54)

= −λ(
∂LD

∂fD
(θt))2||▽θfD(θ

t)||2 +O(λ2) (55)

= −λ(
∂LD

∂fD
(θt))2(

P∑
j=1

(g′D(θ
t
j))

2) +O(λ2) (56)

by chebyshev’s theorem,

P{|g′D(θtj)− ED∼Zng′D(θ
t
j)| ≤ δ} ≥ 1−

V arD∼Zng′D(θ
t
j)

δ2
(57)

Let δ = |ED∼Zng′D(θ
t
j)|r, then

P{|g′D(θtj)| ≥ |ED∼Zng′D(θ
t
j)|(1− r)} ≥ 1− 1

r2
(ED∼Zng′

D(θt
j))

2

V arD∼Zng′
D(θt

j)

(58)

Because
(ED∼Zng′D(θj))

2

V arD∼Zng′D(θj)
(59)

=
(E(x,y)∼Zg

′
D(x, θj))

2

1
nV ar(x,y)∼Zg′(x, θj)

(60)

= n gsnr(θj) (61)

we can deduce that

P{|g′D(θtj)|2 ≥ |ED∼Zng′D(θ
t
j)|2(1− r)2} ≥ 1− 1

nr2gsnr(θtj)
(62)

So

P


 P∑

j=1

(g′D(θ
t
j))

2

 ≥ ED∼Zn

 P∑
j=1

(g′D(θ
t
j))

2

 (1− r)2

 ≥ 1−
P∑

j=1

1

nr2gsnr(θtj)
(63)

By the continuity of gsnr(θj), j = 1, ..., P and ED∼Zn▽θfD(θ), there exists a neighborhood B(θ0) of θ0 such that
θ1, ..., θt ∈ B(θ0), αt be the constant satisfing

gsnr(θj) ≥ αtgsnr(θ
0
j ), j = 1, ..., P (64)

ED∼Zn

 P∑
j=1

(g′D(θj))
2

 ≥ αtED∼Zn

 P∑
j=1

(g′D(θ
0
j ))

2

 (65)

∀θ ∈ B(θ0). Combine (63),

P


 P∑

j=1

(g′D(θ
t
j))

2

 ≥ αt(1− r)2ED∼Zn

 P∑
j=1

(g′D(θ
0
j ))

2

 (66)

≥
P∏

j=1

(
1− 1

nr2αtgsnr(θ0j )

)
(67)

≥ 1−
P∑

j=1

1

nr2αtgsnr(θ0j )
(68)



So, with probability at least 1−
∑P

j=1
1

nr2αtgsnr(θ0
j )

over randomly choosed possible distributions for all training sets D,

LD(θ
t+1)− LD(θ

t) < −λαt(1− r)2(
∂LD

∂fD
(θt))2ED∼Zn(

P∑
j=1

(g′D(θ
0
j ))

2) (69)

□

B. Search Algorithm
We adopt different search algorithms to verify the effectiveness of ξ-GSNR. Specifically, the pruning-based Zero-Shot

NAS algorithm (Algorithm 1) for NAS-Bench-201 [4] and DARTS [6] search space, and the evolutionary Zero-Shot NAS
algorithm (Algorithm 2) for ProxylessNAS [2] and BurgerFormer [8] search space.

Algorithm 1: Pruning-based Zero-Shot NAS via ξ-GSNR
Input: Search Space S; Supernet N0 stacked by cells, each cell has E edges, each edge has |O| operators, step t = 0;

Batch Size B, Batch Numbers N , random ξ.
Output: Optimal Architecture.

Initialize parameters θ of Supernet N0 stacked by cells;
while Nt is not a single-path network do

for each operation om in Nt do
Compute ξ-GSNR 1 of Nt by Eq.(10);
Compute ξ-GSNR 2 of Nt \om by Eq.(10);
Get score s(om) = ξ-GSNR 1 − ξ-GSNR 2

Nt+1 = Nt

for each edge en, n = 1, 2...E do
m∗ = argmin{s(om) : om ∈ en};
Nt+1 = Nt+1 \m∗

t = t+ 1
Return Optimal Architecture

Algorithm 2: Evolutionary Zero-Shot NAS via ξ-GSNR
Input: Search Space S, Inference budget constraints C, search iterations T , population size P ; Batch Size B, Batch

Numbers N , random ξ.
Output: Optimal Architecture.

Initialize population P = {A0, A1, ..., AP } that meets the inference budget constraints C;
Compute ξ-GSNR score S = {S1, S2, ..., SP } in P by Eq.(10);
for t = 1, 2, ..., T do

Randomly sample At ∈ P ;
Ãt = randomly mutate architecture At that meets the inference budget constraints C;
Compute ξ-GSNR score SÃt

of Ãt by Eq.(10);
if SÃt

> min{S1, S2, ..., SP } then
Remove the architecture with the lowest ξ-GSNR score in P ;
Add Ãt to population P ;

else
Skip SÃt

A∗ = the architecture with the highest ξ-GSNR score in P
Return Optimal Architecture A∗



C. Experimental Setup
C.1. Details of Ranking Consistency Experiments

We conduct the ranking consistency experiments in NAS-Bench-201, NAS-Bench-101, and NDS search space strictly
following NASWOT [7] experimental settings. To compute ξ-GSNR proxy score, we set the batch size to 64, the number
of batches to 8, with ξ=1e-8 in NAS-Bench-201 and NDS search space, and the batch size to 1, the number of batches to
8, with ξ=1e-8 in NAS-Bench-101. All the other baseline methods are based on public code [1] with a batch size of 64 in
NAS-Bench-101 and NAS-Bench-201, and a batch size of 128 in NDS search space.

C.2. Details of Searching Experiments

NAS-Bench-201. To directly search for the optimal architecture on different datasets, including CIFAR-10, CIFAR-100,
and ImageNet-16-120, we use the Algorithm 1 following the experimental settings same as TE-NAS [3]. We set the batch
size to 64, and the number of batches to 8, with ξ=1e-8, which are the same as the ranking consistency experimental settings.
The validation accuracy and test accuracy of the searched architecture can be directly indexed on the benchmark.

DARTS Space. Based on Algorithm 1, we search for the optimal normal cell and reduction cell directly on CIFAR-10
and ImageNet. We set the batch size to 4, and the number of batches to 2, with ξ=1e-8 for balancing the efficiency and
effectiveness.

To evaluate the performance of the searched architecture, we follow DARTS [6] settings to retrain the target model. On
CIFAR-10, we train the target network consisting of 20 cells with an initial channel size of 36 on the whole training dataset
from scratch. We use an SGD optimizer with an initial learning rate starting from 0.025 that follows the cosine annealing
strategy to a minimum of 0, and with a weight decay of 3 × 10−4 and a momentum of 0.9. The network is trained for 600
epochs with a batch size of 96. On ImageNet, the target network consists of 14 cells with 48 initial channels. We use the
SGD optimizer with an initial learning rate of 0.5, weight decay of 3× 10−5, and momentum of 0.9. The network is trained
for 250 epochs with a batch size of 1024.

ProxylessNAS Space. The search space contains about 619 different networks. We utilize Algorithm 2 to search for the
optimal architecture directly on ImageNet. The inference budget is limited to around 400M FLOPs. The search iterations
T are 2000 with a population size P of 128. To compute the ξ-GSNR score, the batch size is set to 64, and the number of
batches is set to 2, with ξ=1e-8.

To evaluate the performance of the searched architecture, we follow DNA [5] experimental settings to retrain the model.
The target model has Squeeze-Excitation (SE) attention and Swish activation. We retrain the model with a batch size of 1024
for 500 epochs. We use the RMSprop optimizer with a momentum of 0.9, an initial learning rate of 0.064 that is decayed by
0.963 every 3 epochs.

BurgerFormer Space. The search space includes a large number of ViT-Like structures by a micro-meso-macro design.
We utilize Algorithm 2 to search for the optimal architecture directly on ImageNet. The search iteration T is 2000 with a
population of 128. We limit the resource budget to obtain architectures with similar FLOPs or parameters to baselines.

To evaluate the performance of the searched architecture, we follow the training pipeline of BurgerFormer. The searched
network is retrained using AdamW with a learning rate of 1 × 10−3, weight decay of 0.05, and batch size of 1024. Data
augmentations include MixUp, CutMix, CutOut and RandAugment. The training epochs are 300 with 10 epochs warmup.

D. The variants of GSNR
In addition to ImageNet-16-120, we also compare the different variants of GSNR on CIFAR-10 and CIFAR-100 datasets

in NAS-Bench-201. We randomly sample 200 architectures and then compute the proxy score by leveraging the variants of
GSNR listed in Tab.12. We set the batch size to 64, the number of batches to 8 across all variant proxies, as well as ξ=1e-8.
We can see that (4) GSNR achieves better ranking consistency than either (1) the gradient’s squared mean and (2) the inverse
of gradient’s variance on different datasets. Moreover, a small ξ added to the variance of (3) can improve the performance
over the simple gradient’s variance. Therefore, we develop an efficient Zero-Shot proxy by adding the ξ to the standard GSNR
as shown in (5). As a result, our ξ-GSNR proxy achieves the best ranking.

E. Visualization
Ranking Results. We visualize the architecture’s test accuracy and its corresponding ξ-GSNR proxy score in NAS-Bench-

201 on three different datasets as shown in Fig.4. The ranking consistency on CIFAR-10 is 0.845 of Spearman’s ρ and 0.661



of Kendall’s τ , respectively. The ranking consistency on CIFAR-100 is 0.840 of Spearman’s ρ and 0.658 of Kendall’s τ ,
respectively. The ranking consistency on ImageNet-16-120 is 0.793 of Spearman’s ρ and 0.608 of Kendall’s τ , respectively.

Architectures in DARTS Space. We visualize the searched normal cells and reduction cells directly on CIFAR-10 from
three independent experiments with different random seeds. As shown in Fig.5, the test error and parameters of the network
based on (a)(b) are 2.47% and 3.66M respectively; the test error and parameters of the network based on (c)(d) are 2.54%
and 3.06M respectively; the test error and parameters of the network based on (e)(f) are 2.56% and 3.64M respectively. In
addition, we visualize the searched normal cell and reduction cell directly on ImageNet in Fig.6. The architecture achieves
Top-1 accuracy of 75.5% and Top-5 accuracy of 92.5%.

Architectures in ProxylessNAS Space. We visualize the chain-style architecture searched directly on ImageNet in Fig.7.
Each layer contains an MBConv block with a different kernel size and expansion ratio. The parameters and FLOPs are 5.4M
and 409M, respectively. We achieve the state-of-the-art performance of 78.2% Top-1 accuracy.

Architectures in BurgerFormer Space. We visualize the searched ViT-Like architecture in Fig.8. The architecture with
29M Params and 4.5G FLOPs obtains 83.1% Top-1 accuracy on ImageNet dataset.

CIFAR-10 CIFAR-100

Spearman’s ρ Kendall’s τ Spearman’s ρ Kendall’s τ

(1)
∑P

j=1(E(g(x, y, θj)))2 0.423 0.316 0.533 0.387

(2)
∑P

j=1
1

V ar(g(x,y,θj))
0.250 0.277 0.212 0.244

(3)
∑P

j=1
1

V ar(g(x,y,θj))+ξ 0.256 0.289 0.218 0.256

(4)
∑P

j=1
(E(g(x,y,θj)))2
V ar(g(x,y,θj))

0.763 0.595 0.748 0.574

(5)
∑P

j=1
(E(g(x,y,θj)))2

V ar(g(x,y,θj))+ξ 0.871 0.696 0.854 0.683

Table 12. Comparison Ranking Consistency of GSNR proxy variants on CIFAR-10 and CIFAR-100 in NAS-Bench-201 space.
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Figure 4. Visualization of the test accuracy vs. ξ-GSNR proxy score in NAS-Bench-201 on different datasets, including (a) CIFAR-10, (b)
CIFAR-100, and (c) ImageNet-16-120.
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Figure 5. Visualization of the searched normal cells and reduction cells directly on CIFAR-10 in DARTS search space.
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Figure 6. Visualization of the searched normal cell and reduction cell directly on ImageNet in DARTS search space.
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Figure 7. Visualization of the searched architecture directly on ImageNet in Proxyless search space. “MB” denotes MobileNetV2 block;
“E” denotes expansion ratio; “K” denotes kernel size.
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Figure 8. Visualization of the searched architecture directly on ImageNet in BurgerFormer search space.
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