
A. Pretrained Models

We specify details about all the pretrained models used, as well as the code-generation large language model:

• GLIP [32]. We use the implementation from the official GitHub repository3. In our experiments we use the GLIP-L
(large) version. In order to adapt to new versions of PyTorch, we had to modify the CUDA implementation of some
functions, as the repository relies on old versions of PyTorch. We provide our updated version of GLIP in our code.

• MiDaS [45]. We use the implementation from PyTorch hub4, and use the “DPT_Large” version.

• BLIP-2 [31]. We tried both the implementation from the official repository5 and the Huggingface one6, with little
difference between the two, being the former slightly more performant and the latter faster. In both cases, we used the
Flan-T5 XXL version.

• X-VLM [67]. We used the official implementation7, specifically the version finetuned for retrieval on MSCOCO.

• GPT-3 for llm_query. The GPT-3 model we use for the LLM query function is the text-davinci-003 one. We use the
official OpenAI Python API8.

• Codex. The GPT-3 model we use for code generation is the code-davinci-002 one.

See the code for more detailed implementation details.

B. API

We provide the full API next, in Listing 1:
1 class ImagePatch:
2 """A Python class containing a crop of an image centered around a particular object, as well as relevant information.
3 Attributes
4 ----------
5 cropped_image : array_like
6 An array-like of the cropped image taken from the original image.
7 left : int
8 An int describing the position of the left border of the crop’s bounding box in the original image.
9 lower : int

10 An int describing the position of the bottom border of the crop’s bounding box in the original image.
11 right : int
12 An int describing the position of the right border of the crop’s bounding box in the original image.
13 upper : int
14 An int describing the position of the top border of the crop’s bounding box in the original image.
15

16 Methods
17 -------
18 find(object_name: str)->List[ImagePatch]
19 Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
20 image matching the object_name.
21 exists(object_name: str)->bool
22 Returns True if the object specified by object_name is found in the image, and False otherwise.
23 verify_property(property: str)->bool
24 Returns True if the property is met, and False otherwise.
25 best_text_match(option_list: List[str], prefix: str)->str
26 Returns the string that best matches the image.
27 simple_query(question: str=None)->str
28 Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
29 to "What is this?".
30 compute_depth()->float
31 Returns the median depth of the image crop.
32 crop(left: int, lower: int, right: int, upper: int)->ImagePatch
33 Returns a new ImagePatch object containing a crop of the image at the given coordinates.
34 """
35

36 def __init__(self, image, left: int=None, lower: int=None, right: int=None, upper: int=None):
37 """Initializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as attributes.

3https://github.com/microsoft/GLIP
4https://pytorch.org/hub/intelisl_midas_v2/
5https://github.com/salesforce/LAVIS/tree/main/projects/blip2
6https://huggingface.co/Salesforce/blip2-flan-t5-xxl
7https://github.com/zengyan-97/X-VLM
8https://openai.com/blog/openai-api



38 If no coordinates are provided, the image is left unmodified, and the coordinates are set to the dimensions of the image.
39 Parameters
40 -------
41 image : array_like
42 An array-like of the original image.
43 left : int
44 An int describing the position of the left border of the crop’s bounding box in the original image.
45 lower : int
46 An int describing the position of the bottom border of the crop’s bounding box in the original image.
47 right : int
48 An int describing the position of the right border of the crop’s bounding box in the original image.
49 upper : int
50 An int describing the position of the top border of the crop’s bounding box in the original image.
51

52 """
53 if left is None and right is None and upper is None and lower is None:
54 self.cropped_image = image
55 self.left = 0
56 self.lower = 0
57 self.right = image.shape[2] # width
58 self.upper = image.shape[1] # height
59 else:
60 self.cropped_image = image[:, lower:upper, left:right]
61 self.left = left
62 self.upper = upper
63 self.right = right
64 self.lower = lower
65

66 self.width = self.cropped_image.shape[2]
67 self.height = self.cropped_image.shape[1]
68

69 self.horizontal_center = (self.left + self.right) / 2
70 self.vertical_center = (self.lower + self.upper) / 2
71

72 def find(self, object_name: str) -> List[ImagePatch]:
73 """Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
74 Otherwise, returns an empty list.
75 Parameters
76 ----------
77 object_name : str
78 the name of the object to be found
79

80 Returns
81 -------
82 List[ImagePatch]
83 a list of ImagePatch objects matching object_name contained in the crop
84

85 Examples
86 --------
87 >>> # return the children
88 >>> def execute_command(image) -> List[ImagePatch]:
89 >>> image_patch = ImagePatch(image)
90 >>> children = image_patch.find("child")
91 >>> return children
92 """
93

94 def exists(self, object_name: str) -> bool:
95 """Returns True if the object specified by object_name is found in the image, and False otherwise.
96 Parameters
97 -------
98 object_name : str
99 A string describing the name of the object to be found in the image.

100

101 Examples
102 -------
103 >>> # Are there both cakes and gummy bears in the photo?
104 >>> def execute_command(image)->str:
105 >>> image_patch = ImagePatch(image)
106 >>> is_cake = image_patch.exists("cake")
107 >>> is_gummy_bear = image_patch.exists("gummy bear")
108 >>> return bool_to_yesno(is_cake and is_gummy_bear)
109 """
110 return len(self.find(object_name)) > 0
111

112 def verify_property(self, object_name: str, property: str) -> bool:
113 """Returns True if the object possesses the property, and False otherwise.
114 Differs from ’exists’ in that it presupposes the existence of the object specified by object_name, instead checking whether the object

possesses the property.
115 Parameters



116 -------
117 object_name : str
118 A string describing the name of the object to be found in the image.
119 property : str
120 A string describing the property to be checked.
121

122 Examples
123 -------
124 >>> # Do the letters have blue color?
125 >>> def execute_command(image) -> str:
126 >>> image_patch = ImagePatch(image)
127 >>> letters_patches = image_patch.find("letters")
128 >>> # Question assumes only one letter patch
129 >>> if len(letters_patches) == 0:
130 >>> # If no letters are found, query the image directly
131 >>> return image_patch.simple_query("Do the letters have blue color?")
132 >>> return bool_to_yesno(letters_patches[0].verify_property("letters", "blue"))
133 """
134 return verify_property(self.cropped_image, object_name, property)
135

136 def best_text_match(self, option_list: List[str]) -> str:
137 """Returns the string that best matches the image.
138 Parameters
139 -------
140 option_list : str
141 A list with the names of the different options
142 prefix : str
143 A string with the prefixes to append to the options
144

145 Examples
146 -------
147 >>> # Is the cap gold or white?
148 >>> def execute_command(image)->str:
149 >>> image_patch = ImagePatch(image)
150 >>> cap_patches = image_patch.find("cap")
151 >>> # Question assumes one cap patch
152 >>> if len(cap_patches) == 0:
153 >>> # If no cap is found, query the image directly
154 >>> return image_patch.simple_query("Is the cap gold or white?")
155 >>> return cap_patches[0].best_text_match(["gold", "white"])
156 """
157 return best_text_match(self.cropped_image, option_list)
158

159 def simple_query(self, question: str = None) -> str:
160 """Returns the answer to a basic question asked about the image. If no question is provided, returns the answer to "What is this?".
161 Parameters
162 -------
163 question : str
164 A string describing the question to be asked.
165

166 Examples
167 -------
168

169 >>> # Which kind of animal is not eating?
170 >>> def execute_command(image) -> str:
171 >>> image_patch = ImagePatch(image)
172 >>> animal_patches = image_patch.find("animal")
173 >>> for animal_patch in animal_patches:
174 >>> if not animal_patch.verify_property("animal", "eating"):
175 >>> return animal_patch.simple_query("What kind of animal is eating?") # crop would include eating so keep it in the query
176 >>> # If no animal is not eating, query the image directly
177 >>> return image_patch.simple_query("Which kind of animal is not eating?")
178

179 >>> # What is in front of the horse?
180 >>> # contains a relation (around, next to, on, near, on top of, in front of, behind, etc), so ask directly
181 >>> return image_patch.simple_query("What is in front of the horse?")
182 >>>
183 """
184 return simple_qa(self.cropped_image, question)
185

186 def compute_depth(self):
187 """Returns the median depth of the image crop
188 Parameters
189 ----------
190 Returns
191 -------
192 float
193 the median depth of the image crop
194



195 Examples
196 --------
197 >>> # the person furthest away
198 >>> def execute_command(image)->ImagePatch:
199 >>> image_patch = ImagePatch(image)
200 >>> person_patches = image_patch.find("person")
201 >>> person_patches.sort(key=lambda person: person.compute_depth())
202 >>> return person_patches[-1]
203 """
204 depth_map = compute_depth(self.cropped_image)
205 return depth_map.median()
206

207 def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
208 """Returns a new ImagePatch cropped from the current ImagePatch.
209 Parameters
210 -------
211 left : int
212 The leftmost pixel of the cropped image.
213 lower : int
214 The lowest pixel of the cropped image.
215 right : int
216 The rightmost pixel of the cropped image.
217 upper : int
218 The uppermost pixel of the cropped image.
219 -------
220 """
221 return ImagePatch(self.cropped_image, left, lower, right, upper)
222

223 def overlaps_with(self, left, lower, right, upper):
224 """Returns True if a crop with the given coordinates overlaps with this one,
225 else False.
226 Parameters
227 ----------
228 left : int
229 the left border of the crop to be checked
230 lower : int
231 the lower border of the crop to be checked
232 right : int
233 the right border of the crop to be checked
234 upper : int
235 the upper border of the crop to be checked
236

237 Returns
238 -------
239 bool
240 True if a crop with the given coordinates overlaps with this one, else False
241

242 Examples
243 --------
244 >>> # black cup on top of the table
245 >>> def execute_command(image) -> ImagePatch:
246 >>> image_patch = ImagePatch(image)
247 >>> table_patches = image_patch.find("table")
248 >>> if len(table_patches) == 0:
249 >>> table_patches = [image_patch] # If no table found, assume the whole image is a table
250 >>> table_patch = table_patches[0]
251 >>> cup_patches = image_patch.find("black cup")
252 >>> for cup in cup_patches:
253 >>> if cup.vertical_center > table_patch.vertical_center
254 >>> return cup
255 >>> return cup_patches[0] # If no cup found on top of the table, return the first cup found
256 """
257 return self.left <= right and self.right >= left and self.lower <= upper and self.upper >= lower
258

259

260 def best_image_match(list_patches: List[ImagePatch], content: List[str], return_index=False) -> Union[ImagePatch, int]:
261 """Returns the patch most likely to contain the content.
262 Parameters
263 ----------
264 list_patches : List[ImagePatch]
265 content : List[str]
266 the object of interest
267 return_index : bool
268 if True, returns the index of the patch most likely to contain the object
269

270 Returns
271 -------
272 int
273 Patch most likely to contain the object



274

275 Examples
276 --------
277 >>> # Return the man with the hat
278 >>> def execute_command(image):
279 >>> image_patch = ImagePatch(image)
280 >>> man_patches = image_patch.find("man")
281 >>> if len(man_patches) == 0:
282 >>> return image_patch
283 >>> hat_man = best_image_match(list_patches=man_patches, content=["hat"])
284 >>> return hat_man
285

286 >>> # Return the woman with the pink scarf and blue pants
287 >>> def execute_command(image):
288 >>> image_patch = ImagePatch(image)
289 >>> woman_patches = image_patch.find("woman")
290 >>> if len(woman_patches) == 0:
291 >>> return image_patch
292 >>> woman_most = best_image_match(list_patches=woman_patches, content=["pink scarf", "blue pants"])
293 >>> return woman_most
294 """
295 return best_image_match(list_patches, content, return_index)
296

297

298 def distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float:
299 """
300 Returns the distance between the edges of two ImagePatches. If the patches overlap, it returns a negative distance
301 corresponding to the negative intersection over union.
302 """
303 return distance(patch_a, patch_b)
304

305

306 def bool_to_yesno(bool_answer: bool) -> str:
307 return "yes" if bool_answer else "no"
308

309

310 def llm_query(question: str) -> str:
311 ’’’Answers a text question using GPT-3. The input question is always a formatted string with a variable in it.
312

313 Parameters
314 ----------
315 question: str
316 the text question to ask. Must not contain any reference to ’the image’ or ’the photo’, etc.
317 ’’’
318 return llm_query(question)
319

320

321 class VideoSegment:
322 """A Python class containing a set of frames represented as ImagePatch objects, as well as relevant information.
323 Attributes
324 ----------
325 video : torch.Tensor
326 A tensor of the original video.
327 start : int
328 An int describing the starting frame in this video segment with respect to the original video.
329 end : int
330 An int describing the ending frame in this video segment with respect to the original video.
331 num_frames->int
332 An int containing the number of frames in the video segment.
333

334 Methods
335 -------
336 frame_iterator->Iterator[ImagePatch]
337 trim(start, end)->VideoSegment
338 Returns a new VideoSegment containing a trimmed version of the original video at the [start, end] segment.
339 select_answer(info, question, options)->str
340 Returns the answer to the question given the options and additional information.
341 """
342

343 def __init__(self, video: torch.Tensor, start: int = None, end: int = None, parent_start=0, queues=None):
344 """Initializes a VideoSegment object by trimming the video at the given [start, end] times and stores the
345 start and end times as attributes. If no times are provided, the video is left unmodified, and the times are
346 set to the beginning and end of the video.
347

348 Parameters
349 -------
350 video : torch.Tensor
351 A tensor of the original video.
352 start : int



353 An int describing the starting frame in this video segment with respect to the original video.
354 end : int
355 An int describing the ending frame in this video segment with respect to the original video.
356 """
357

358 if start is None and end is None:
359 self.trimmed_video = video
360 self.start = 0
361 self.end = video.shape[0] # duration
362 else:
363 self.trimmed_video = video[start:end]
364 if start is None:
365 start = 0
366 if end is None:
367 end = video.shape[0]
368 self.start = start + parent_start
369 self.end = end + parent_start
370

371 self.num_frames = self.trimmed_video.shape[0]
372

373 def frame_iterator(self) -> Iterator[ImagePatch]:
374 """Returns an iterator over the frames in the video segment."""
375 for i in range(self.num_frames):
376 yield ImagePatch(self.trimmed_video[i], self.start + i)
377

378 def trim(self, start: Union[int, None] = None, end: Union[int, None] = None) -> VideoSegment:
379 """Returns a new VideoSegment containing a trimmed version of the original video at the [start, end]
380 segment.
381

382 Parameters
383 ----------
384 start : Union[int, None]
385 An int describing the starting frame in this video segment with respect to the original video.
386 end : Union[int, None]
387 An int describing the ending frame in this video segment with respect to the original video.
388

389 Examples
390 --------
391 >>> # Return the second half of the video
392 >>> def execute_command(video):
393 >>> video_segment = VideoSegment(video)
394 >>> video_second_half = video_segment.trim(video_segment.num_frames // 2, video_segment.num_frames)
395 >>> return video_second_half
396 """
397 if start is not None:
398 start = max(start, 0)
399 if end is not None:
400 end = min(end, self.num_frames)
401

402 return VideoSegment(self.trimmed_video, start, end, self.start)
403

404 def select_answer(self, info: dict, question: str, options: List[str]) -> str:
405 return select_answer(self.trimmed_video, info, question, options)
406

407 def __repr__(self):
408 return "VideoSegment({}, {})".format(self.start, self.end)

Listing 1. Full API.

Not all methods are used in all the benchmarks. Next we describe in more detail what content is used for the API
specifications for every benchmark.

• RefCOCO and RefCOCO+. We use all the methods from the ImagePatch class except for best_text_match and
simple_query. We also use the best_text_match and distance functions. Additionally we add ImagePatch usage
examples in the API definition that are representative of the RefCOCO dataset, and look like the following:

1 # chair at the front
2 def execute_command(image) -> ImagePatch:
3 # Return the chair
4 image_patch = ImagePatch(image)
5 chair_patches = image_patch.find("chair")
6 chair_patches.sort(key=lambda chair: chair.compute_depth())
7 chair_patch = chair_patches[0]
8 # Remember: return the chair
9 return chair_patch

Listing 2. RefCOCO example.



• GQA. The GQA API contains all the contents in the API from Listing 1 up until the llm_query function, which is not
used. The ImagePatch usage examples look like the following:

1 # Is there a backpack to the right of the man?
2 def execute_command(image)->str:
3 image_patch = ImagePatch(image)
4 man_patches = image_patch.find("man")
5 # Question assumes one man patch
6 if len(man_patches) == 0:
7 # If no man is found, query the image directly
8 return image_patch.simple_query("Is there a backpack to the right of the man?")
9 man_patch = man_patches[0]

10 backpack_patches = image_patch.find("backpack")
11 # Question assumes one backpack patch
12 if len(backpack_patches) == 0:
13 return "no"
14 for backpack_patch in backpack_patches:
15 if backpack_patch.horizontal_center > man_patch.horizontal_center:
16 return "yes"
17 return "no"

Listing 3. GQA example.

• OK-VQA. The API only uses the simple_query method from ImagePatch. It additionally uses the llm_query function.
The ImagePatch usage examples look like the following:

1

2 # Who is famous for allegedly doing this in a lightning storm?
3 def execute_command(image)->str:
4 # The question is not direct perception, so we need to ask the image for more information
5 # Salient information: what is being done?
6 image = ImagePatch(image)
7 guesses = []
8 action = image.simple_query("What is being done?")
9 external_knowledge_query = "Who is famous for allegedly {} in a lightning storm?".format(action)

10 step_by_step_guess = llm_query(external_knowledge_query)
11 guesses.append("what is being done is {}".format(action) + ", so " + step_by_step_guess)
12 direct_guess = image.simple_query("Who is famous for allegedly doing this in a lightning storm?")
13 guesses.append(direct_guess)
14 return process_guesses("Who is famous for allegedly doing this in a lightning storm?", guesses)

Listing 4. OK-VQA example.

• NeXT-QA. The VideoSegment class is added to the API definition, and the available ImagePatch methods are find,
exists, best_text_match and simple_query. The function best_image_match is also used. The ImagePatch usage
examples look like:

1 # why does the man with a red hat put his arm down at the end of the video
2 # possible answers: [’watching television’, ’searching for food’, ’move its head’, ’looking over cardboard box’, ’looks at the camera’]
3 def execute_command(video, possible_answers, question)->[str, dict]:
4 # Reason every step
5 video_segment = VideoSegment(video)
6 # Caption last frame of the video (end of video)
7 last_frame = ImagePatch(video_segment, -1)
8 last_caption = last_frame.simple_query("What is this?")
9 men = last_frame.find("man")

10 if len(men) == 0:
11 men = [last_frame]
12 man = men[0]
13 man_action = man.simple_query("What is the man doing?")
14 # Answer the question. Remember to create the info dictionary
15 info = {
16 "Caption of last frame": last_caption,
17 "Man looks like he is doing": man_action
18 }
19 answer = video_segment.select_answer(info, question, possible_answers)
20 return answer, info

Listing 5. NeXT-QA example.

• Beyond benchmarks. For the examples in Figure 1 we use the same API as the one used for the benchmarks, and the
usage examples are taken from the benchmark APIs, combining them to have more generality. We do not add any other
example, ViperGPT generalizes to the complex cases shown in Figure 1 just based on the provided API.

Note that in some of the examples we added comments, as well as error handling. The generated code also contains similar
lines. We removed those for clarity in the figures shown in the main paper.


