
Supplementary Material
ACTIVE: Towards Highly Transferable 3D Physical Camouflage

for Universal and Robust Vehicle Evasion
A. Overview

This supplementary material describes the details of our implementation and evaluation results that can not be included in
the main paper due to page limit. Furthermore, additional experiments and more evaluation samples for all experiments on the
main paper are also presented.

B. Algorithm Details
B.1. Triplanar Mapping

In this section, we provide a detailed algorithm and figures for triplanar mapping [14]. Algorithm 1 and Figure 1 describe
the step-by-step process of extracting a projected texture using triplanar mapping.

Algorithm 1 Triplanar Mapping Algorithm

Input: Depth Image xd, Camera Parameters ϕ, Projection Augmentation ϕrd, Adversarial Texture η
Output: Projected Texture ηp
(1) Extract Surface Normal xSN and Surface World Coordinates xSWC

Extract camera intrinsic matrix ϕin and extrinsic matrix ϕex from ϕ
Compute 3D Local Coordinates xLC from ϕin and xd

xSWC ← xLC × ϕex

Compute xSN from xSWC using the cross product of two tangent vectors
(2) Extract Triplanar Mask
Compute Triplanar Mask xTM based on the highest absolute value of xSN for each axis
Compute xTM x, xTM y , xTM z masked for each axis
(3) Extract Projected Texture ηp
Compute the Repeated Surface Coordinates xRSC by modulating the xSWC with the repeated texture size based on ϕrd

Take the UV indices of xUV x, xUV y , xUV z from each axis of Repeated Surface Coordinates xRSC

Assign the projected texture ηp x, ηp y , ηp z for each axis from η mapped with xUV x, xUV y , xUV z

ηp x m ← ηp x × xTM x, ηp y m ← ηp y × xTM y, ηp z m ← ηp z × xTM z

ηp ← ηp x m + ηp y m + ηp z m

B.2. Framework Procedure

This section describes the optimization of our adversarial texture using the ACTIVE framework. Drawing inspiration from
the DTA framework [19], we employ the Neural Texture Renderer (NTR) for rendering our triplanar-mapped textures onto
target vehicles while maintaining various physical properties. Prior to optimizing the adversarial texture, it is necessary to
train the NTR in advance. A detailed explanation of the NTR can be found in Section D. Subsequently, during the ACTIVE
training phase, we generate the optimal adversarial texture by minimizing Ltotal. To further evaluate the attack performance,
we conduct a physical simulation (on UE4) wherein our adversarial texture is applied as a world-aligned texture to the target
vehicle in UE4, as illustrated in the ACTIVE test phase in Figure 2 of our main paper.

C. Implementation Details
C.1. Dataset

Cars. We select multiple types of cars that are available on the CARLA [4] simulator. Five types of cars used for attack
texture generation and robustness evaluation are Audi Etron, Citreon C3, Mercedes-Benz Coupe, Nissan Patrol, and Charger
2020. Additionally, five other cars used for universality evaluation are BMW GrandTourer, Audi A2, Mercedes-Benz C-Class,
Jeep Wrangler Rubicon, and Tesla Model 3. All cars are visualized in Fig. 2.



(a) Triplanar mapping pipeline (b) Triplanar mapping mechanism

Figure 1: Detailed pipeline and mechanism of Triplanar mapping [14]

(a) Multiple types of cars used for attack texture generation and robustness evaluation

(b) Multiple types of cars used for universality evaluation

Figure 2: All cars used in our evaluation

For NTR Model Training. We select a map in CARLA and randomly choose 75 random locations for training and 50
different locations for testing. On each location, we generate a car dataset using a camera with a 5-meters distance, 15-degree
pitch, and every 30-degree rotation. For each transformation, we gradually change the car types and textures with eight
boundary colors and one gray color (as reference image) for training. Additionally, we select 50 random colors for testing.
In summary, we employ 50,625 photo-realistic images for training (consisting 5 cars x 75 positions x 12 camera poses x 9
colors), and 150,000 images for testing (consisting 5 cars x 50 positions x 12 camera poses x 50 colors).

For Attack Texture Generation. We use the same cars and camera poses, then choose 250 random locations on the same
map to synthesize the reference images. In summary, we use 15,000 photo-realistic images as reference xref (consisting 5
cars x 250 positions x 12 camera poses x 1 color). For each dataset, we also synthesize the car mask (i.e., the target object).

For Attack Texture Evaluation. For robustness, we evaluate Audi Etron at 50 random locations, while for universality, we
assess multiple cars at 20 random locations. We use wider camera transformation to evaluate attacks on untrained camera
distributions as default. We also define multiple camera settings, including [[5, 7.5], [7.5, 10], [10, 12.5], [12.5, 15]] meter
distances, [[0, 15], [15, 30], [30, 45]] pitch degrees, and [[0, 30], [30, 60], ..., [330, 360]] rotation degrees. Each value is selected
randomly within the range for each evaluation sample. A total of 14,400 images (consisting 5 cars x 20 positions x 4 distances
x 3 pitches x 12 angles) for a single texture evaluation are used in our experiments.



C.2. Compared Methods

We provide detailed parameter setup of compared methods: Dual Attention Suppression (DAS) [25], Full-coverage
Camouflage Attack (FCA) [22], Universal Physical Camouflage (UPC) [9] CAMOU [29], Enlarge-and-Repeat (ER) [27],
and Differentiable Transformation Attack (DTA) [19] in our experiment. Except for texture taken from original codes, we
re-optimize all methods targeting YOLOv3 [15] on Audi Etron car, and use the same simulated town for a fair comparison.
Additionally, we include random and naive camouflage patterns to evaluate the model’s robustness against arbitrary textures.

DAS and FCA. These methods use Neural Mesh Renderer (NMR) [10] to optimize the adversarial camouflage over a 3D
car and attach it to the background, which is CARLA simulated town. We use the original texture from their official codes
(DAS: https://github.com/nlsde-safety-team/DualAttentionAttack, FCA: https://github.com/idrl-lab/Full-coverage-camouflage-
adversarial-attack) for our evaluations. Specifically, both textures are optimized for Audi Etron and CARLA Town10. We
follow FCA for generating texture targeting YOLOv3 [15] as the white box model. Since these methods depend on a specific
3D UV map, we only evaluate them on robustness evaluation.

UPC. This method outputs a masked patch that can be attached to the target surface. Since UPC has different settings to
reproduce in our environments and is specifically designed for targeting Faster R-CNN [16], we execute their official code:
https://github.com/mesunhlf/UPC-tf and keep the original attack setup on cars, then use their attack patches in our environment.
Following [19], we utilize decals in Unreal Engine to apply UPC patches onto target car surfaces, covering the hood, doors,
rooftop, and back to ensure visibility from diverse perspectives. Since UPC has a different setting from ours, we only evaluate
this method in transferability comparison. Fig. 3 shows samples taken from related works’ original papers (left) and how we
fully transfer the texture on Unreal Engine 4 [5] (right).

(a) DAS [25] (b) FCA [22] (c) UPC [22]

Figure 3: Transferring textures from the original paper (left) to our evaluation setting by fully rendering it on Unreal Engine 4
with epic settings (right).

CAMOU, ER, and DTA. These methods output repeated patterns that cover all target object surfaces as physical camouflage.
We choose the same 16× 16 texture resolution as the best original setting that forms mosaic-like patterns. We closely replicate
the original papers’ approach, but we rebuild the environment and target models same as our evaluation setup (optimizing
texture on Audi Etron and targeting YOLOv3 [15]). For CAMOU, we generate the camouflage pattern using the same clone
network architecture and other parameters as the original paper. For ER, we use the same parameters as the original paper,
except changing the p = 3 and r = 1 parameters to produce the same 16 × 16 texture. For DTA, we use NTR as neural
renderer in our paper and optimize the texture using the original parameters. All generated textures and the rendered cars are
shown in Fig. 4.

(a) CAMOU [29] (b) ER [27] (c) DTA [19]

Figure 4: Re-implementation of previous works in our test environment. For each figure, the left side depicts the generated
camouflage pattern, while the right side depicts the result of a car rendered by repeated texture using world-aligned texture.

https://github.com/nlsde-safety-team/DualAttentionAttack
https://github.com/idrl-lab/Full-coverage-camouflage-adversarial-attack
https://github.com/idrl-lab/Full-coverage-camouflage-adversarial-attack
https://github.com/mesunhlf/UPC-tf


In conclusion, the tables in our main paper were designed with specific criteria in mind. In particular, Tab. 2 compares only
adversarial camouflage methods based on Neural Renderer (i.e., DAS, FCA, and DTA), aimed at assessing its suitability for
digital-to-physical transferability. Next, Tab. 3 compares methods that can directly attack the same target model (YOLOv3),
vehicle, and simulated town, with Random and Naive camouflage serving as additional benchmarks for robustness against
arbitrary texture. Subsequently, UPC was omitted in Tab. 3 due to its loss being designed only for attacking Faster R-CNN. In
contrast, Tabs. 4 and 5 place UPC for comparing universality but exclude DAS and FCA due to their object-dependent textures
cannot be universally applied to different cars.

C.3. Evaluated Models

We evaluate our method on multiple publicly-available state-of-the-art COCO [11] pre-trained object detection models
including EfficientDet-D2 [20], YOLOv3 [15], SSD [12], Faster R-CNN [16], Mask R-CNN [7], YOLOv7 [21], Dynamic
R-CNN [28], Sparse R-CNN [18], Deformable DETR [30], Pyramid Vision Transformer [26], MobileNetV2 [17], and
YOLOX-L [6], with the default score threshold set to 0.30. Furthermore, we also evaluate the attack patterns on state-of-the-art
pre-trained panoptic segmentation model including Max-DeepLab-L [23] and Axial-DeepLab [24] with SWideRNet [2]
Backbone either pretrained on COCO [11] or Cityscape [3] dataset. For the object detection task, we evaluate the target
car AP@0.5, while for the segmentation task, we evaluate the target car pixel accuracy. The details of all evaluated models,
including model variant, publication venue, and implementation framework, are available in Table 1 for object detection
models and Table 2 for segmentation models.

Table 1: All COCO pre-trained object detection models used in our evaluations. Models are sorted by publication year.

Model Name Model Variant Venue Year ML Framework Implementation Link
Faster R-CNN ResNet50 NPIS 2015 TensorFlow TF Object Detection API [8] Here

SSD ResNet50-FPN ECCV 2016 TensorFlow TF Object Detection API [8] Here
Mask R-CNN Inception ResNetV2 ICCV 2017 TensorFlow TF Object Detection API [8] Here

YOLOv3 YOLOv3 ArXiv 2018 TensorFlow TF Re-implementation Here
MobileNetv2 FPN Lite CVPR 2018 TensorFlow TF Object Detection API [8] Here
EfficientDet EfficientDet-D2 CVPR 2020 TensorFlow TF Object Detection API [8] Here

Dynamic R-CNN ResNet50 ECCV 2020 Pytorch MMDetection [1] Here
Pyramid Vision Transformer PVT-S ICCV 2021 Pytorch MMDetection [1] Here

Deformable DETR Two-Stage DDTR ICLR 2021 Pytorch MMDetection [1] Here
Sparse R-CNN ResNet50-FPN CVPR 2021 Pytorch MMDetection [1] Here

YOLOX YOLOX-L ArXiv 2021 TensorFlow TF Re-implementation Here
YOLOv7 YOLOv7 ArXiv 2022 Pytorch Official Implementation Here

Table 2: All pre-trained panoptic segmentation models used in our evaluations. Models are sorted by publication year.

Model Name Model Variant Venue Year Pre-trained Dataset Implementation Link
Axial-DeepLab Axial-SWideRNet-(1, 1, 4.5) ECCV 2020 Cityscape TF DeepLab2 Here
MaX-DeepLab MaX-DeepLab-L CVPR 2021 Cityscape TF DeepLab2 Here
MaX-DeepLab MaX-DeepLab-L CVPR 2021 COCO TF DeepLab2 Here

D. Neural Texture Renderer (NTR)
D.1. Improvement from Differentiable Transformation Network (DTN)

In this section, we present Neural Texture Renderer (NTR), the improvement of DTN by Suryanto et al. [19]. In particular,
we found several redundancies in the DTN, especially in the Transformation Features TF and training process. Here, we
describe per point how we managed to improve DTN in our NTR.

Redundancy in Transformation Features. DTN as in [19] uses four TF, including TF Subtractor + ReLU, TF Adder, TF
Multiplier, and TF Final Adder that are assumed to cover all basic transformations. We theorize that the first two layers are
redundant; the last two are already sufficient for encoding the TF. Therefore, we only use TF Multiplier and TF Final Adder in
our final Transformation Features TF that are similar to weight and bias in Neural Network design. Our NTR architecture
using the dense connection is depicted in Fig. 5a.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/open-mmlab/mmdetection/tree/master/configs/dynamic_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/pvt
https://github.com/open-mmlab/mmdetection/tree/master/configs/deformable_detr
https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/yolox
https://github.com/WongKinYiu/yolov7
https://github.com/google-research/deeplab2/blob/main/g3doc/projects/axial_deeplab.md
https://github.com/google-research/deeplab2/blob/main/g3doc/projects/axial_deeplab.md
https://github.com/google-research/deeplab2/blob/main/g3doc/projects/max_deeplab.md


Redundancy in Dataset. DTN uses 50 flat random color textures for training the network. We believe that this is inefficient,
particularly when we want to train the network with multiple objects. We hypothesize that training the network with eight
boundary colors in RGB space and gray [128, 128, 128] as the reference color is enough to make the network generalize other
colors. The eight boundary colors consist of the primary colors (red [255, 0, 0], green [0, 255, 0], blue [0, 0, 255]), secondary
colors (magenta [255, 0, 255], yellow [255, 255, 0], cyan [0, 255, 255]), white [255, 255, 255], and black [0, 0, 0], as in Fig. 5b.

(a) Our Implemented NTR Architecture (b) Selected Boundary Colors in RGB Space

Figure 5: Neural Texture Renderer (NTR) Architecture and Improvement from DTN

D.2. NTR Evaluation
We then perform experiments to evaluate our hypotheses about redundancy in the DTN design. In particular, we train

several models using the same machine, and each model is trained with 32 batch sizes for 20 epochs using a single Nvidia
Tesla V100 GPU and Intel Xeon E5-2696 CPU. Evaluation results are as shown in Tab. 3, with DTN as the baseline. From the
table, we can infer that training the model with only eight boundary colors and gray is enough to enable generalizing the test
set, resulting in 82% efficiency. Furthermore, removing redundant TF does not hurt the performance, showing that the last two
TF are enough to encode the expected transformation features.

Table 3: NTR Evaluation

Model N Colors Total Dataset Training Time Tess Loss Test SSIM
DTN (/w dense connection, k layers=4) 50 281,250 20.4 hours 0.0312 0.986
+ Trained with Boundary Colors 9 50625 3.7 hours 0.0314 0.985
++ Removed Redundant TF 9 50625 3.7 hours 0.0314 0.985

D.3. NTR Sample Predictions
Here, we present the sample prediction of NTR on the test set after the training is completed. Fig. 6a shows sample

prediction result consisting of the reference image containing the target object, expected texture, predicted image (i.e., the
output of NTR), ground truth, and MSE (i.e., the error between the predicted image and ground truth). As shown, NTR can
learn how to render the expected texture given the reference image. Fig. 6b shows the process of transforming expected texture
using the encoded TF. We can observe that TF multiplier is enough to encode the color transformation with the expected
texture. TF multiplier can encode how the texture is minimized or emphasized and remove the non-applied texture part. The
TF final adder enhances the image from the TF multiplier and adds the non-applied texture part from the reference image.

(a) NTR sample predictions on test set (b) Transforming expected texture with the encoded TF

Figure 6: NTR Sample Predictions



E. Robustness Evaluation Details
E.1. Detailed Performance on Various Camera Poses

We evaluate YOLOv3 [15] (a white-box model), and SSD [12], Faster R-CNN [16], Mask R-CNN [7] (which are black-box
models) for each distance, rotation, and pitch. As shown in Fig. 7 and 8, our method has better attack performance than other
methods and is relatively stable under various camera poses in most cases.

(a) YOLOv3 [15] (b) SSD [12]

(c) Faster R-CNN [16] (d) Mask R-CNN [7]

Figure 7: Attack comparison on different camera poses. Values are Average Precision @0.5 of the target car.

Figure 8: Sample predictions for each method and evaluated model. Green = correct; Yellow = partially correct; Red =
misdetection. Zoom for detail.



F. Universality Evaluation Details
We provide the detailed experimental results of the universality evaluation. First, we evaluate the transferability by trying

out our method in different settings (i.e., different from the settings used in the robustness evaluation). We also evaluate the
transferability on different classes (i.e., truck and bus) and a different task (i.e., segmentation models). Finally, we fabricate the
car models with a 3D printer to evaluate our method’s transferability to the real world.

F.1. Transferability to Different Settings

Here, we use different settings from the robustness evaluation: different cars (as in Fig. 2b), different scenes, and diverse
modern object detection architecture such as YOLOv7 [21], Dynamic R-CNN [28], Sparse R-CNN [18], Deformable DETR
(DDTR) [30], and Pyramid Vision Transformer (PVT) [26]. As shown in Fig. 9, it is observed that our method outperforms
previous works in most cases, and even when being evaluated in different settings as a black-box attack. Sample prediction for
each model can be seen in Fig. 10.

(a) YOLOv3 [15] (b) YOLOv7 [21]

(c) Dynamic R-CNN [28] (d) Sparse R-CNN [18]

(e) Deformable DETR [30] (f) Pyramid Vision Transformer [26]

Figure 9: Universality evaluation on different camera poses. Target objects, models, and scenes differ from the training setting.
Values are Average Precision @0.5 of the target car.



Figure 10: Sample predictions for each method on various models and cars. Green = correct; Yellow = partially correct; Red =
misdetection. Zoom for detail.

F.2. Transferability to Different Class (Truck and Bus)

We perform evaluations to inspect whether the proposed adversarial camouflage can be transferred to other vehicle classes.
We select a truck and a Volkswagen bus —which are available on the CARLA —as the target objects, and use the same
textures and evaluated models from the previous evaluation. The detailed attack performance comparison for each method and
evaluated model can be seen in Fig. 11, showing that our camouflage still performs best compared to others. Additionally,
YOLOv7 sample prediction for each method and object can be seen in Fig. 12.

Figure 11: Transferability to different vehicle classes (truck and bus).

F.3. Transferability to Different Task (Segmentation Models)

We use segmentation models such as MaX-DeepLab-L [23] and Axial-DeepLab [24] to evaluate the transferability to
different tasks. We evaluate the pixel accuracy of the car label to show how the adversarial camouflage can decrease the
prediction of the target object. Fig. 13 shows that our method yields significantly higher attack performance compared to other
methods, even for the segmentation models. Sample predictions can be seen in Fig. 14.



Figure 12: YOLOv7 sample predictions for truck and bus. Green = correct; Yellow = partially correct; Red = misdetection.
Zoom for detail.

(a) Cityscape Pretrained MaX-DeepLab-L [23] (b) Cityscape Pretrained Axial-DeepLab [24]

(c) COCO Pretrained MaX-DeepLab-L [23]

Figure 13: Transferability to segmentation models on different camera poses. Values are Pixel Accuracy of the target car.

Figure 14: Sample predictions of normal and our camouflage car on Axial-DeepLab. The camouflage works universally on
multiple cars.



F.4. Transferability to the Real World

We conduct a real-world experiment by fabricating two 1:10-scaled Tesla Model 3s with a 3D printer: one for a normal
and another for our camouflaged car with the texture targeting YOLOv3. We select the adversarial camouflage with the best
attack performance (i.e., the lowest AP of YOLOv3) to reliably measure the transferability to the real world when producing a
camouflaged car. We place the car models in five real-world locations and capture car images for every 45-degree interval
in angles ([0, 45], [45, 90], . . . , [315, 360] degrees) with three different distances ([5, 7.5], [7.5, 10], [10, 12.5] meters) and
two different pitches ([0, 15], [15, 30] degrees) using iPhone 11 Pro Max. As a result, a total of 240 images (5 locations × 8
rotations × 3 distances × 2 pitches) are taken for each camera pose, and 240 images for each car model. In summary, a total
of 480 images are used for evaluation.

We evaluate practical real-time object detectors widely used in the real world: MobileNetV2 [17], EfficientDet-D2 [20],
YOLOX-L [6], and YOLOv7 [21]. From Fig. 15, our adversarial camouflaged car can significantly decrease AP@0.5 of all
object detection models in the real world. Fig. 16 shows that the normal car model is well detected, whereas the camouflaged
car model is not detected as a car at all under various camera poses.

(a) YOLOv3 [15] (b) MobileNetv2 [17]

(c) EfficientDet-D2 [20] (d) YOLOX-L [6]

(e) YOLOv7 [21]

Figure 15: Transferability to real world on different camera poses. Values are Average Precision @0.5 of the target car.



(a) Normal car. Cars can be consistently detected with relatively high scores.

(b) Our camouflaged car. It can evade most of the detection with a high success rate, while background objects can still be detected correctly.

Figure 16: Sample predictions of our real-world evaluation using two scaled car models. We randomly sample 240 real-
world images for a single car consisting of five locations, three distances, eight rotations, and two pitch angles as camera
transformation sets. Zoom for detail.



G. Ablation Study

G.1. Effect of Different Losses With Respect to Performance

We perform a detailed analysis of our loss hyperparameters, including our smooth loss β and camouflage loss γ with
respect to the attack performance in the white-box setting (targeting YOLOv3). We fix our stealth loss α as 1.0 and run a grid
search for both β and γ with the value in the range of [0.0, 0.25, 0.5, 0.75, 1.0]. As shown in Fig 17, the smooth loss has a
better correlation for increasing the attack performance than camouflage loss. Also, as mentioned by [13], extreme differences
between adjacent pixels in the perturbation are unlikely to be accurately captured by cameras and may not be physically
realizable; thus, the smooth loss becomes important in physical adversarial attacks, as verified in our experiment. On the other
hand, utilizing our camouflage loss may result in a trade-off between attack performance and naturalness since it suppresses
texture by using colors close to the extracted dominant background, limiting the use of other colors to enhance the attack. This
can be seen from the AP@0.5 grouped by camouflage γ showing that γ = 0 has the lowest mean compared to others.

Figure 17: Performance graph for various smooth loss β and camouflage loss γ.

G.2. Effect of Different Losses with Respect to Naturalness

Here, we visualize the effect of different losses with respect to texture naturalness. As shown in Fig 18, we can see that both
smooth and camouflage loss have a role in texture naturalness. We also observe that higher smooth β results in lower pixels
variance, yielding a smooth texture, while higher camouflage γ results in softer color texture. Additionally, only utilizing
the smooth loss may result in a bright and garish color texture, attracting more human attention, whereas only employing
camouflage loss may result in a rough texture. Thus, utilizing both smooth and camouflage loss yields in a more natural result
with a smoother and softer texture.



Figure 18: Our optimized adversarial camouflage texture with various smooth loss β and camouflage loss γ: base texture (left),
after rendered in UE4 (right).

G.3. Effect of Different Target Models

We conduct experiments using a state-of-the-art (SOTA) model to assess how different target models affect attack perfor-
mance. The results of our experiments are presented in Table 4, indicating that when targeting YOLOv7, a more robust model,
we obtain a corresponding increase in the robustness of the texture.

Table 4: Universality evaluation on SOTA target model (YOLOv7)

Evaluated Model - Car AP@0.5Methods
(Target) YOLOv3 YOLOv7 DRCN SRCN DDETR PVT

Normal 85.98 92.54 83.20 82.55 83.83 88.59
Ours (YOLOv3) 22.55 41.55 30.38 42.00 14.69 51.54
Ours (YOLOv7) 33.13 20.98 15.33 17.98 10.11 32.43
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