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A. Additional quantitative analysis
Fig. A shows the progression of the image quality and di-

versity metrics, FID and LPIPS, for different methods dur-
ing few-shot adaptation. For these visualizations, we pick
a pair of structurally dissimilar source-target domain pairs
(Horses→Pokemons). The curves in the figure correspond
to the results in Table 1 in the main paper.

Our observation from Fig. A is that in the challeng-
ing adaptation scenario (Horses→Pokemons) prior meth-
ods achieve the best performance in FID (left plot) very
early during the training, and are then unable to improve
the image quality at later stages. For example, the meth-
ods without any diversity preserving regularization (TGAN,
FreezeD, AdAM) suffer from training instabilities, indi-
cated by an early collapse in the FID curves. On the
other hand, the FID of the models that regularize diver-
sity degradation (CDC, RSSA) remains stable without im-
provements. We hypothesize that these methods can suc-
cessfully adapt the colors of objects from the source do-
main to the style of the target domain quickly, but they are
not able to learn more high-level properties like shape of
objects at later stages. This is confirmed by the visual re-

sults in Fig. E, where the images generated by these meth-
ods strongly follow the structure of the source domain. In
contrast, our method allows to improve FID throughout
the whole training and thus achieves higher image quality
(yellow curve in the left plot). Next, the diversity evalu-
ation (right plot) demonstrates that the LPIPS of TGAN,
FreezeD, and AdAM collapses to low values very quickly,
indicating training instabilities. Similarly, CDC and RSSA
also suffer from diversity degradation, but it is slowed down
with the help of the diversity regularizations used in these
methods. Finally, our method allows to maintain high di-
versity scores throughout the whole training process.

B. The effect of the FID evaluation protocol.

Our FID evaluation protocol differs from prior works in
two ways. Firstly, as in the regime of dissimilar source-
target domains the best performance can be achieved at later
training epochs (e.g., see Fig. A), we extend the duration of
the training procedure from 5k to 30k epochs. We addi-
tionally evaluate all methods at epochs 500 and 750 since
we found this beneficial to achieve superior FID scores for

Figure A. The FID and LPIPS curves of different methods for the few-shot adaptation between dissimilar domains Horses→Pokemons.
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Method
Face→Sketch Face→Sunglasses
FIDval↓ FID[6]↓ FIDval↓ FID[6]↓

TGAN [7] 54.2 47.3 36.8 36.2
FreezeD [5] 48.8 40.8 32.0 31.9
CDC [6] 54.2 46.8 30.5 31.2
RSSA [8] 61.4 51.8 36.3 35.9
AdAM [10] 56.3 47.8 31.1 29.7
Ours 45.2 39.9 27.5 27.0

Table A. Effect of a different FID evaluation protocol. The differ-
ences between the protocols are described in Sec. B.
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Figure B. Latent space interpolations of the source generator
and the ablation models from Table B. Leftmost and rightmost
columns show the used λSS and the resolution of Gl.

some close source-target domain pairs.
Secondly, we resort to evaluating FID between the sets

of generated and real images of the same size, which is a
standard practice in the community. In contrast, prior work
[6] proposed to compute FID between 5000 generated im-
ages and the whole validation set, which often contains a
significantly smaller amount of images. We note that com-
puting FID between sets of different sizes is generally not
advisable due to a mismatch in estimation of variances of

the first two moments between real and generated distribu-
tions [1]. The difference in evaluation results between our
(FIDval) and prior protocols (FID[6]) is demonstrated in Ta-
ble A, where the Sketch and Sunglasses domains have 290
and 2683 images, respectively. Due to a larger generated
set, FID[6] tends to output consistently lower scores than
our reported numbers, but it does not change the ranking of
the models.

C. Additional qualitative results
We provide additional visual results with StyleGANv2

for the dissimilar source-target domains Face→Cats [10]
and Horses→Pokemons in Fig. E. In both cases, our method
generates diverse images that inherit the variation of the
source images and flexibly combine features of different tar-
get images. In contrast, in most cases for the prior methods
we observe inferior performance due to either memorization
issues, training instabilities, or inability to learn the shape of
objects in the target domain. We note that while the gener-
ation results of our method in the Pokemons domain exhibit
the most realistic shapes and the largest variation in colors,
it is still challenging to generate fully realistic new poke-
mons in the 10-shot regime. Further improvement of few-
shot synthesis for such challenging datasets is an interesting
direction for future work.

Fig. F shows results for the more similar domain pairs
Face→Babies and Churches→Haunted Houses. We find
that the results are consistent with Fig. 4: our method suc-
cessfully adapts images of churches to a new style or con-
verts adult faces into babies, performing on par with previ-
ous state-of-the-art approaches.

D. Ablation on the parameters of the smooth-
ness similarity regularization

Our smoothness similarity regularization has two param-
eters: the regularization strength λSS and the resolution of
features Gl. All the experiments in the main paper were
conducted with λ = 5.0 and Gl at resolution (32×32). In
Fig. B and Table B we provide an ablation on both these pa-
rameters. Firstly, we observe the effect of λSS (rows 3-6 in
Fig. B and rows 2-5 in Table B). As seen from the ablation
study, compared to the model without any regularization,
our smoothness similarity regularization helps to overcome
memorization and achieve diverse synthesis. The effect of
LSS is, as expected, higher when λSS is increased, which
is indicated by increasing LPIPS scores. Yet, we find that
setting a high λSS starts to compromise the image quality,
as the loss starts to overtake the adversarial loss supervi-
sion. We found that λ = 5.0 consistently achieves a good
trade-off between image quality and diversity across many
source-target domains.

Furthermore, we observe the effect of using features at
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Figure C. 1-shot and 5-shot GAN adaptation results on the Cats and Pokemons datasets.

λSS
Res. Face→Anime Church→Shells

of Gl FID↓ LPIPS↑ FID↓ LPIPS↑
- - 116.4 0.36 175.4 0.43

0.2 32×32 110.0 0.41 160.2 0.44
1.0 32×32 96.4 0.51 144.5 0.50

25.0 32×32 105.2 0.58 171.0 0.55
125.0 32×32 131.3 0.64 188.5 0.57

5.0 8×8 104.1 0.44 156.6 0.45
5.0 16×16 101.4 0.55 150.2 0.48
5.0 64×64 114.7 0.59 165.5 0.54
5.0 128×128 128.2 0.60 182.2 0.57
5.0 32×32 97.3 0.57 140.5 0.53

Table B. Ablation on λSS and the resolution of Gl used for the
smoothness similarity regularization.

different resolutions, corresponding to different generator
blocks (rows 7-10 in Fig. B and rows 6-9 in Table B).
We find that using later generator blocks at higher resolu-
tion increases the impact of the regularization. However,
we also observe that using a very high resolution leads to
the transfer of image transitions from the source domain at
more fine-grained level, which can compromise image qual-
ity, for example transferring minor details that do not look
realistic in the target domain. Based on the results in Ta-
ble B), we concluded that the resolution (32×32) provides

a good quality-diversity trade-off as it transfers high-level,
more interpretable image variations without compromising
the high-level coherency of objects in the target domain.

E. Additional analysis on Lall

The second component of our model is a new way to
compute the D’s loss. As discussed in Sec. 4.1, allowing
the discriminator to compute the loss at different layers is
strongly beneficial for improving the quality of synthesized
images. Interestingly, even though the formulation of Lall

in Eq. 3 has equal weights for all layers, the final contribu-
tions can still be different because activations si◦Di(x) can
have different magnitudes for different layers. In effect, this
leads to an automatic discovery of the correct loss contribu-
tion of each layer depending on the source-target domains,
as shown in Fig. 6.

The fact that optimal contributions of different layers
in Fig. 6 are different suggests using alternative weighting
schemes rather than using equal weights for all layers. For
comparison, we consider two alternative strategies: assign-
ing higher weights on earlier or later D layers. For this,
instead of the uniform weights [1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0]/7 in Eq. 3, we use either the weighting [1.6, 1.4, 1.2,
1.0, 0.8, 0.6, 0.4]/7 or [0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]/7,
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Real samples – 10-Shot healthy Crops Real samples – 10-Shot Crops with nitrogen deficiencies

Generated samples: Generated samples:

Figure D. Above: 10-shot subsets of the DND-SB dataset [9], depicting healthy sugar beat crops or crops with nitrogen nutrition deficiency.
Below: few-shot adaptation results with StyleGAN pre-trained on FFHQ.

Lall weighting
Face→Anime Church→Shells
FID↓ LPIPS↑ FID↓ LPIPS↑

“Earlier” 96.8 0.59 157.4 0.52
Uniform (ours) 97.3 0.57 140.5 0.53

“Later” 93.2 0.53 138.4 0.48
Table C. Effect of using different weights for different layers in
Lall. Bold denotes the best performance.

referred to as “Earlier” or “Later” in Table C.
We note that there exists a trade-off. On one hand, while

using higher weights for earlier layers is beneficial for the
closer domains Face→Anime (improved FID and LPIPS),
it also leads to degraded image quality for the more distant
domains Church→Shells (higher FID). On the other hand,
the “later” strategy universally improves the image qual-
ity, but leads to memorization of training images and thus
lower LPIPS scores. For this reason, we select the uniform
weighting as it is the simplest solution which already al-
lows D to adjust the contributions of different layers, while
providing a reasonable balance between image quality and
diversity for diverse source-target domain pairs.

F. 1-shot and 5-shot adaptation performance
In the main paper, we mainly focus on the 10-shot tar-

get datasets. Following prior work, we extend our analysis
to 5-shot and 1-shot setups. Consistent with Sec. 4, our
main focus is on the challenging case of structurally dis-
similar source and target domains. We thus construct 1-shot
and 5-shot scenarios of the adaptation between Face→Cats
and Horses→Pokemons (10-shot results for these datasets
are shown in Fig. E). We compare our method to CDC [6],

which is a popular baseline from the literature. Our observa-
tions from Fig. C are consistent with the main paper: while
the prior method CDC cannot learn the shapes of objects in
the new domain, our method achieves more realistic synthe-
sis, successfully transferring meaningful high-level image
variations even from structurally dissimilar datasets.

G. Application: detection of nutrient deficien-
cies of crops

We investigate the application of our model to the task of
visual detection of nutrient deficiencies in crop science [9].
In agriculture, this task is important to enable timely actions
to prevent major losses of crops caused by lack of nutrients,
such as nitrogen. From the data collection perspective, this
task refers to restricted image domains, since it typically
requires manual photographing of growing crops and expert
knowledge for obtaining correct annotations. Therefore, we
explore whether our model can be trained on a limited set
of images depicting sugar beats (see Fig. D).

For our experiments, we pick two random 10-shot sub-
sets of the DND-SB dataset [9], consisting of images with
healthy sugar beats and crops suffering from nitrogen nu-
trient deficiencies (see Fig. D). We use the StyleGANv2
checkpoint pre-trained on FFHQ [3]. Despite using such
a dissimilar source domain, we observe that our model still
achieves photorealistic synthesis of new crops, for exam-
ple changing the shape or locations of leaves of the training
examples.

To verify that our generated images preserve the char-
acteristics of interest of the training images, we take a
classification network, which was pre-trained to perform
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Smooth. reg. w.r.t.: ImageNet→Flowers ImageNet→Pokemons
Noise Class FID↓ LPIPS↑ FID↓ LPIPS↑
✗ ✗ 123.9 0.28 129.4 0.27
✓ ✗ 114.0 0.39 104.6 0.41
✓ ✓ 106.4 0.55 89.6 0.56

Table D. Ablation on the performance when adapting the class-
conditional BigGAN model [2] pre-trained on ImageNet.

the healthy-deficient binary classification on images of the
same resolution (256×256). We observe that generated im-
ages from the healthy subset were identified correctly in
98.9% cases, while nitrogen deficiencies were detected cor-
rectly for 95.6% of the images generated from the second
subset. We consider this experiment as a promising exam-
ple which suggests future utilization of our model for data
augmentation in restricted image domains.

H. Additional details in the class-conditional
GAN setting

For our experiments in Sec. 4.2, we pre-train the
class-conditional BigGAN model [2] (without BigGAN-
deep extensions) on ImageNet at the image resolution of
(256×256). The model achieves FID of 9.23 on the Im-
ageNet validation set. We then fine-tune both the pre-
trained generator and discriminator on the provided few-
shot dataset using our proposed loss terms as presented in
Sec. 3. We use batch size of 32, decay of 0.999 for the gen-
erator’s exponential moving averages, and learning rates of
2e-4 and 8e-4 for the generator and discriminator, respec-
tively, while preserving all the other hyperparameters that
were used for pre-training.

The generator of BigGAN takes two inputs, a noise vec-
tor and a class label. The input label is then projected into
a continuous embedding space via a learnable linear map-
ping. To enable the adaptation of the generator to uncondi-
tional few-shot datasets, we do not inject class labels in our
approach but directly operate with the pre-learnt continuous
class embedding. At each fine-tuning epoch, we therefore
sample a Gaussian vector in a joint noise-class space.

The discriminator of BigGAN takes a class label only
at the final layer, where it is processed via a linear projec-
tion layer [4] and added to the output features of the last
discriminator’s block. In our experiments, we remove this
conditioning mechanism and simply pass unmodified fea-
tures after the last block to the final layer to compute the
adversarial loss. This way, our whole model can be trained
on the provided dataset in an unconditional fashion.

We apply our smoothness similarity regularization using
the generator’s features at resolution (32×32). We explored
two different ways for the implementation of the regulariza-
tion, considering smoothness with respect to only the noise
space or the joint noise-class space. We found that using

the class embeddings for the regularization is important, as
achieving a high synthesis diversity without it is difficult
(see Table D). We hypothesize that this happens because a
large part of transferable image variations in the source do-
mains is contained not only in the interpolations between
different noise vectors, but also in the interpolations be-
tween different classes.
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Sabine J Seidel, Gabriel Schaaf, and Juergen Gall. Deep
learning for non-invasive diagnosis of nutrient deficiencies
in sugar beet using rgb images. Sensors, 2020.

[10] Zhao Yunqing, Keshigeyan Chandrasegaran, Milad Abdol-
lahzadeh, and Ngai-man Cheung. Few-shot image genera-
tion via adaptation-aware kernel modulation. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

5



10-shot
Cats

T
G

A
N

FreezeD
C

D
C

R
SSA

A
dA

M
O

urs
Source

10-shot
Pokemons

T
G

A
N

FreezeD
C

D
C

R
SSA

A
dA

M
O

urs
Source

Figure E. Additional visual comparison to prior methods on Face→Cats and Horses→Pokemons, the source-target dataset pairs with a
dissimilar structure (e.g., shapes of objects).
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Figure F. Additional visual comparison to most recent prior methods on related domains.
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