
Supplementary Material
A. Detail of Existing Methods of Comparison Experiments

In order to evaluate the performance of ARREST, we selected many existing methods for comparison. Table 6 lists the
DNNs trained on existing methods, with 22 and 13 DNN models for CIFAR-10 and CIFAR-100, respectively. The standard
and AutoAttack accuracies, Sum, ARDist, and sources of their accuracies are depicted. Almost all models used WideResNet-
34-10 as an architecture, though several ones used WideResNet-28-10. We found that AWP [63], LAS-AT [23], S2O [24],
and LBGAT [12] had the four best scores in terms of Sum and ARDist on both CIFAR-10 and CIFAR-100.

Table 6. Detailed information on existing methods. The source of each accuracy is also described in the rightmost column. The methods are
sorted using the score of ARDist in ascending order. * indicates a result obtained with WideResNet-28-10; the other results were obtained
with WideResNet-34-10.

Standard AutoAttack Sum ARDist Source of performance
CIFAR-10 - ε = 8/255

AT [37] 87.14% 44.04% 131.18 -1.500 RobustBench
DAT [61] 86.20% 45.38% 132.10 -1.991 Directly copied from [52]
TLA [34] 86.21% 47.41% 133.62 -1.282 RobustBench
CAT [5] 89.61% 34.78% 124.39 -1.259 Directly copied from [52]
MART [62] 83.62% 50.98% 134.60 -0.922 Provided model
BAT [59]* 91.20% 29.35% 120.55 -0.690 RobustBench
FS [68]* 90.00% 36.64% 126.64 -0.502 RobustBench
AIT [69]* 90.25% 36.45% 126.70 -0.297 RobustBench
BS [8] 85.32% 51.12% 136.44 -0.230 RobustBench
AGKD-BML [58]* 86.25% 50.59% 136.84 0.184 Directly copied from [58]
FAT [71] 89.34% 43.05% 132.39 0.343 Provided model
SAL [26] 91.51% 34.22% 125.73 0.496 RobustBench
IAD [72] 85.09% 52.29% 137.38 0.535 Directly copied from [72]
SAT [52] 86.84% 50.75% 137.59 0.766 Directly copied from [52]
LAT [29] 87.80% 49.12% 136.92 0.853 RobustBench
TRADES [70] 84.92% 53.08% 138.00 1.180 RobustBench
ST [31] 84.92% 53.54% 138.46 1.616 Directly copied from [31]
Bag of Tricks [40] 84.24% 53.88% 138.12 1.829 Directly copied from [40]
LAS-AT [23] 86.23% 53.58% 139.81 2.236 Directly copied from [23]
AWP [63] 85.57% 54.04% 139.61 2.314 Directly copied from [63]
S2O [24] 85.67% 54.10% 139.77 2.410 Directly copied from [24]
LBGAT [12] 88.22% 52.18% 140.40 2.706 Provided model

CIFAR-100 - ε = 8/255
AT [37] 59.59% 22.86% 82.45 -3.268 Our reimplementation
AIT [69]* 69.51% 2.80% 72.31 -7.403 Provided model
CAT [5] 62.84% 16.82% 79.66 -5.487 Directly copied from [52]
FS [68]* 73.94% 0.04% 73.98 -4.728 Provided model
FAT [71] 65.51% 21.17% 86.68 -0.618 Provided model
TRADES [70] 56.50% 26.87% 83.37 -0.449 Directly copied from [12]
SAT [52] 62.95% 24.56% 87.51 0.074 Directly copied from [52]
BS [8] 62.15% 26.94% 89.09 1.549 RobustBench
IAD [72] 60.72% 27.89% 88.61 1.687 Directly copied from [72]
AWP [63] 60.38% 28.86% 89.24 2.424 Directly copied from [63]
S2O [24] 63.40% 27.60% 91.00 2.786 Directly copied from [24]
LAS-AT [23] 61.80% 29.03% 90.83 3.189 Directly copied from [23]
LBGAT [12] 70.25% 26.73% 96.98 6.639 Provided model



B. Detail of ARDist

As described in Subsection 5.1, ARDist approximates a curve representing the accuracy-robustness tradeoff. The red
dashed lines in Figs. 1 and 3 show the approximated curves. ARDist evaluates the mitigation by calculating the distance
between the approximated curve and a point given by the method being evaluated. We can calculate the distance by finding
the approximated curve’s normal through the evaluated point. This can be done with numerical calculation. The source codes
for the calculation of ARDist are as follows. One can easily use these codes by only setting the standard and AutoAttack
accuracies of a method that is required evaluation.

## ARDist for CIFAR-10 ##
from scipy import optimize, exp
import numpy as np

p=90.24 # please set standard accuracy
q=50.20 # please set AutoAttack accuracy

def f(x):
return 9.877e-05*x**3 - 0.3922*x**2 + 63.82*x - 2600

def df(x):
return 9.877e-05*3*x**2 - 0.3922*2*x + 63.82

def h(x):
return q-f(x) + (p-x)/df(x)

x_sol = float(optimize.fsolve(h,90))
sign = np.sign(q-f(p))
print("x = " + str(x_sol))
print("y = " + str(f(x_sol)))
print("Sign: " + str(sign))
print(sign * np.sqrt((p-x_sol)**2+(q-f(x_sol))**2))

## ARDist for CIFAR-100 ##
from scipy import optimize, exp
import numpy as np

p=73.05 # please set the standard accuracy
q=24.32 # please set the AutoAttack accuracy

def f(x):
return 0.0005615*x**3 - 0.1582*x**2 + 12.44*x - 271.8

def df(x):
return 0.0005615*3*x**2 - 0.1582*2*x + 12.44

def h(x):
return q-f(x) + (p-x)/df(x)

x_sol = float(optimize.fsolve(h,70))
sign = np.sign(q-f(p))
print("x = " + str(x_sol))
print("y = " + str(f(x_sol)))
print("Sign: " + str(sign))
print(sign * np.sqrt((p-x_sol)**2+(q-f(x_sol))**2))



C. Results with Other Distance Functions
In the experiment, we used the angular distance as d(·) in RGKD. However, RGKD also performs well with other distance

functions. Table 7 lists the results of RGKD depending on the distance functions. As shown, using the mean squared
error (MSE) and mean absolute error (MAE) achieves almost the same performance of the angular distance. Since using the
angular distance achieves slightly better than the other two functions, we chose it in the experiments.

Table 7. Comparison of three distance functions in RGKD.
Standard AutoAttack

MSE 88.34% 50.06%
MAE 88.31% 50.13%
Angular distance 88.52% 50.20%

D. Comparison with TRADES and S2O using Varied Hyperparameters
As discussed in Section 2, TRADES [70] can achieve various accuracy-robustness tradeoffs by adjusting the hyperparame-

ter β. Although we used the results of TRADES with β = 6.0 for comparison in Figs. 1 and 3, it is also important to compare
ARREST with TRADES when other hyperparameters are used. Here, we compared ARREST with not only TRADES but
also a recent state-of-the-art method called S2O [24], which is integrated with TRADES. We set three values {0.5, 1.0, 6.0}
as the hyperparameter β. Figures 7 and 8 show the results for CIFAR-10 and CIFAR-100, respectively. In these figures, the
results of ARREST clearly appear on the right side relative to those of TRADES and S2O, thus indicating that ARREST can
achieve higher standard accuracy while maintaining the same robustness as these methods. Finally, in both figures, we also
show the approximated curve of the tradeoff for ARDist, the same as in Figs. 1 and 3. As we can see, these curves are in
good agreement with the results of ARREST and S2O.

85 86 87 88 89 90 91

4
4

4
6

4
8

5
0

5
2

5
4

Standard accuracy (%)

A
u

to
A

tt
ac

k
 a

cc
u

ra
cy

 (
%

)

●

TRADES

β =6.0

● β =1.0

● β =0.5

●

S
2
 O

β =6.0

● β =1.0

● φ =30
o

ARREST
● φ =45

o

●
φ =37.5

o

Figure 7. Comparison results between ARREST,
TRADE, and S2O for CIFAR-10.

60 65 70 75

1
5

2
0

2
5

Standard accuracy (%)

A
u

to
A

tt
ac

k
 a

cc
u

ra
cy

 (
%

)

●

TRADES
β =6.0

● β =1.0

● β =0.5

●

S
2
 O

β =6.0

● β =1.0

● β =0.5

● φ =30
o

ARREST

● φ =32.5
o●

φ =35
o

Figure 8. Comparison results between ARREST, TRADE, and
S2O for CIFAR-100.

E. Results of Other Attacks
In Section 5, we mainly evaluated the robustness using AutoAttack [11] since it is common and reliable. In this appendix,

we evaluated the robustness of ARREST using other attacks. Table 8 lists the results obtained with four variations of our
method (only AFT, AFT with RGKD, AFT with NR, and all of them, i.e., ARREST) and two baselines (standard training
and AT). We evaluated them using four types of adversarial attacks: FGSM [15], PGD (7 and 30) [37], and CW (30) [6].
The number in parentheses indicates the number of iterative steps for each attack. As seen in Table 8, the robustness trend of
the variations of our method is consistent with those in Table 2. Namely, ARREST also exhibits high adversarial robustness
against various attacks, not only AutoAttack.



Table 8. Results obtained with four variations of our method (only AFT, AFT with RGKD, AFT with NR, ARREST) and two base-
lines (standard training and AT). Evaluation of robustness is done with FGSM [15], PGD (7 and 30) [37], and CW (30) [6]. Number in
parentheses indicates number of iterative steps for each attack.

ResNet-18 WideResNet-34-10
Standard FGSM PGD (7) PGD (20) CW (30) Standard FGSM PGD (7) PGD (20) CW (30)

ST 94.5% 28.3% 0% 0% 0% 95.4% 38.6% 0% 0% 0%
AT [37] 84.7% 56.0% 50.6% 46.7% 46.9% 87.1% 56.1% 50.0% 45.8% 46.8%
AFT 84.1% 56.2% 52.4% 49.2% 48.0% 87.5% 60.0% 55.0% 51.3% 51.3%
AFT + RGKD 85.1% 57.4% 53.0% 49.6% 49.0% 88.5% 61.5% 56.0% 52.3% 52.9%
AFT + NR 85.5% 56.5% 52.4% 49.0% 48.1% 88.9% 60.1% 54.7% 51.0% 51.4%
ARREST 86.6% 57.7% 53.3% 49.4% 49.3% 90.2% 63.0% 56.8% 52.4% 53.4%

F. Detail of Other Knowledge Distillation Methods
In this appendix, we formulate the other knowledge distillation methods used in Table 4. We used two methods for our

comparisons, (i) logit and (ii) attention map. Hereafter, we formulate them in order.
First, logit [12] guides the DNN with the final output of the pretrained DNN θ∗s . It replaces LRGKD in Eq. (4) to Llogit

that is formulated as

Llogit(x, δ, θr) = d (f(x+ δ; θr), f(x; θ
∗
s )) . (6)

We set the hyperparameter λ = 1 in accordance with Cui et al. [12].
Second, attention map [58] guides the DNN with a spatial attention map computed from the latent representations [67]. It

replaces LRGKD in Eq. (4) to LAT that is formulated as

LAT = d(AT(h(x+ δ; θr),AT(h(x; θ
∗
s ))). (7)

Here, AT(A) =
F (A)

||F (A)||2
, F (A) =

C∑
i

|Ai|. (8)

Note that this loss function assumes that the latent representations h(x+ δ; θr) and h(x; θ∗s ) are obtained from convolutional
network [18, 28, 51, 55, 66], and tensors in RC×H×W . Ai (∈ RH×W ) indicates the ith tensor along C (channel) direction in
the representation. Therefore, in Eq. (8), F (A) means simply summing up the representation along C direction, and AT(A)
normalizes it. We set the hyperparameter λ = 2 in accordance with Wang et al. [58].

We used the same experimental settings in AFT and RGKD except for the settings described above.

G. Detail of Optimization with Additional Examples
In this appendix, we explain the setup of our experiments with additional examples (listed in Table 5). In these exper-

iments, we utilized the framework in RST [43]. The experimental settings were mostly the same as those explained in
Subsection 5.2. Thus, here, we describe only the settings that differed from those settings.

In the experiments, we utilized the additional unlabeled examples that were originally provided by Carmon et al. [7].
These examples were pseudo labeled in advance [7], and we used them as ground-truth labels. The batch size was set to
256, and the fraction of unlabeled examples in the batch was 0.5, i.e., 128 unlabeled examples were used in each batch. In
RST in Table 5, we set the number of training epochs to 200. The learning rate started at 0.1 and then decayed by ×0.1
with transition epochs {150, 180}. These settings follow Raghunathan et al. [43]. In ARREST, we set the number of training
epochs to 100. The learning rate started at 0.025, decayed to 0.02 at 50 epochs, and then decayed by half every 10 epochs
thereafter.

Finally, in accordance with Raghunathan et al. [43], LCE is calculated with not only adversarial but also clean examples
in both RST and ARREST. The resulting loss function is denoted as LCE_RST,

LCE_RST(x, δ, y, θr) = 0.5 LCE(f(x+ δ; θr), y) + 0.5 LCE(f(x; θr), y). (9)

We replacedLCE withLCE_RST in optimization. Note that the PGD objective function was maintainingLCE(f(x+δ; θr), y)
alone, without LCE(f(x; θr), y).


