
Supplementary: Preserving Modality Structure Improves Multi-Modal Learning

We organize this supplement as follows. We present ad-
ditional results in Sec. 1, followed by the design choices
for Multi-SK in Sec. 2.1, discussion on the computational
complexity of Multi-SK in Sec. 2.2 and pseudo-code for the
Multi-SK in Sec. 3. Further, we present more qualitative re-
sults in Sec. 4 and additional experimental setup details in
Sec. 5.

1. Results

1.1. Zero-Shot Classification

We further evaluate the effectiveness of our method on
zero-shot action classification task on HMDB [7] and UCF-
101 [14] datasets. Following [3, 13], we average the rep-
resentations from video and audio modalities and use that
as the representation for evaluation. The HMDB dataset
consists of realistic videos from various sources, including
movies and web videos. The dataset is composed of 6, 849
video clips from 51 action categories, with each category
containing at least 101 clips. The UCF-101 dataset consists
of over 13k clips from 101 action classes. To compute accu-
racy, we perform k-means clustering on top of the features
and use the Hungarian matching algorithm [8] to find a one-
to-one mapping for each cluster to ground-truth classes and
report performance. For these experiments, we test on the
full HMDB and UCF-101 datasets. We report the results in
Tab. 1. We notice that our proposed method outperforms the
baseline on both datasets, especially on the HMDB dataset
it achieves 2.1% improvement.

Method
Train Train Visual HMDB UCF-101

Mod. Dataset BB Acc↑ Acc↑

EAO [13] tva HT100M R152 + RX101 35.4 64.0
Ours tva HT100M R152 + RX101 37.5 64.8

Table 1: Zero-shot classification on HMDB/UCF-101

1.2. Zero-shot Retrieval MSVD

We further evaluate our approach on MSVD dataset us-
ing R152+RX101 features and compare with EAO [13] in
Tab. 2). Our approach outperforms the previous SoTA
method EAO.

Method R@5↑ R@10↑ MedR↓ MeanR↓
EAO [13] 50.4 64 5 25.9

Ours 51.6 66.6 5 24.9

Table 2: Zero-shot Retrieval results on MSVD.

Method
Visual Textual MSR-VTT

BB BB R@5↑ R@10↑ MedR↓ MeanR↓

EAO [13] CLIP word2vec 33.8 43.4 14 72.3
Ours CLIP word2vec 35.1 45.1 13 67.2

EAO [13] CLIP CLIP 36.7 49.1 10 66.7
Ours CLIP CLIP 39.7 49.3 10 63.3

Table 3: Zero-shot Retrieval results on MSR-VTT with
CLIP backbones. BB=Backbone.

1.3. Zero-shot Retrieval with CLIP features

We further evaluate our approach with stronger visual
and text backbones i.e. CLIP backbones [11]. We use the
CLIP model pre-trained on the large WebImageText WIT
dataset. To be particular, we use the ViT-B/32 model to ex-
tract a single 512-dimensional feature per second for video
and a single 512-dimensional feature per word for text. For
both modalities, we adapt features after projection into the
multi-modal embedding space. We report the performance
of zero-shot text-to-video retrieval in Tab. 3. First, we eval-
uate using CLIP as visual backbone and word2vec as text
backbone and compare with EAO [13]. Our approach im-
proves baseline on all the metrics as shown in Tab. 3 with
1.3%, 1.7% gain for R@5, R@10 respectively. Next, we
evaluate with CLIP as both visual and textual backbone and
show gains on all the metrics, specifically a 3% gain on
R@5. It can be observed that using CLIP backbone fea-
tures improves the overall performance compared to R152
+ RX101 and word2vec backbones. Overall, these results
demonstrate that our approach can even be applied to multi-
modal pretrained features where preserving the modality-
specific semantic structure can further improve the perfor-
mance.

1.4. Text-to-Video Only Model

For comparison with text-video only models, we also
train our approach on text and video data and compare with



Method
Visual MSR-VTT

BB R@1↑ R@5↑ R@10↑ MedR↓

ActBERT [15] Res3D+Faster R-CNN 8.6 23.4 33.1 36
HT100M [9] R152 + RX101 7.5 21.2 29.6 38

NoiseEstim. [1] R152 + RX101 8.4 22.0 30.4 36
EAO [13] R152 + RX101 9.6 26.1 36.1 23

Ours R152 + RX101 11.4 26.6 36.3 22

Table 4: Zero-shot Retrieval results on MSR-VTT for
Text-Video only model. For fair comparison, we compare
with models trained on HT100M and frozen backbones.
BB=Backbone.

state-of-the-art in Tab. 4. Our approach achieves 1.8% im-
provement in R@1 on MSR-VTT dataset. These results fur-
ther validates the effectiveness of our proposed method in
solving zero-shot cross-modal retrieval tasks.

1.5. Analysis for Loss Coefficients

We provide an analysis for loss coefficients λnce and
λsspc (defined in Sec 3.3 of main text) in Tab. 5. The
first two rows demonstrate that increasing the value of λnce

leads to better performance compared to increasing the
value of λsspc. However, the last row demonstrates that our
default setup with equal loss weights leads to the best per-
formance.

MSR-VTT

λnce λsspc R@5↑ R@10↑ MedR↓ MeanR↓

2.0 1.0 23.9 32.1 25.5 94
1.0 2.0 22.8 33.1 28.5 94.9

Ours 1.0 1.0 25.1 34.5 26 91.8

Table 5: Analysis for Loss coefficients. Zero-shot Retrieval
results on MSR-VTT and YouCook2 datasets.

Cross-modal (CM) and modality-specific (MS) SSPC loss
coefficient ablation: To empirically demonstrate that pre-
serving MS structure helps in generalization, we conduct an
experiment to further analyze the effect of CM and MS SSPC
loss and present our results in Tab. 6. Removing either of
the SSPC losses leads to a noticeable performance drop. Par-
ticularly, the last row demonstrates a 2− 3.5% drop in per-

MSR-VTT YouCook2
CM MS R@10↑ R@10↑

Ours 1 1 34.5 50.1
0 1 31.8 48.3
1 0 32.4 46.7

Table 6: Effect of Cross-Modal (CM) and Modality-Specific
(MS) losses. Zero Shot Retrieval on MSR-VTT and
YouCook2 datasets.

formance when the modality-specific SSPC loss is removed.
This empirically validates that preserving modality-specific
structure improves cross-modal representation.

2. Multi-Assignment Sinkhorn-Knopp
In this section, first we discuss the design choices for

generating the similarity matrix in Sec. 2.1 and then discuss
about computational complexity of the proposed Multi-SK
in Sec. 2.2

2.1. Design Choices for generating 3D Similarity
Matrix

The primary objective of Multi-SK is to select the top
K ′ anchors. As discussed in main text, we generate the
3D similarity matrix, S′, in such a way that there is a
pre-defined rank between the channels, which can be uti-
lized for selecting the top K ′ anchors. In the main text,
we describe our default setup (Approach 1) for generat-
ing the 3D similarity matrix, S′, where we use a damp-
ing factor µ to differentiate between the channels. How-
ever, this approach does not provide a fine ranking amongst
the top K ′ channels. To this end, we experiment with an-
other approach (Approach 2) for generating S′ which en-
ables fine ranking between the top K ′ channels. We gen-
erate monotonically decreasing weights for the channels. A
simple formulation for generating such continuous channels
is S′

i = (η + (1 − η)(1 − i/K))S, where η is the hyper-
parameter to control the range of weights across the chan-
nels.

For our problem, we are only interested in selecting the
top K ′ anchors and not concerned about obtaining a fine
ranking of anchors. Hence, we employ approach 1. For
analysis, we compare the design choices i.e. approach 1 vs
2 of the 3D similarity matrix and report results in Tab. 7.
For this, we train a model with a 3D similarity matrix using
approach 2 and set the value of η to 0.1. We observe that
our approach slightly outperforms approach 2 validating our
hypothesis that for our tasks having a fine ranking between
top K ′ channels is not necessary.

Strategy
MSR-VTT

R@5↑ R@10↑ MedR↓ MeanR↓

Approach 2 25.1 34.7 27 97.3
Approach 1 (Ours) 25.1 34.5 26 91.8

Table 7: Effect of 3D similarity matrix generation for zero-shot
retrieval task on MSR-VTT dataset.

2.2. Computational Complexity for Multi-SK

For the proposed Multi-SK algorithm, in addition to
the row-wise and column-wise operation in SK, we per-



(a) IBV6LizqCK8 (Computers and Electronics) (b) gDkz 9AQQ-g (Computers and Electronics)

(c) Video Anchor Assignments

Figure 1: Anchor assignments for samples within a category that visually look different. As the samples look different (as shown in (a) &
(b)) the anchor assignment (c) is also slightly different demonstrating the effectiveness of our approach to capture variance across samples
within a category.Green cell → Anchor assigned, Yellow → Anchor not assigned. Difference in anchor assignments indicated in red .

(a) A0hURqF7h-c (Personal Care and Style) (b) Y5lyX3KJoE (Finance and Business)

(c) Video anchors

Figure 2: Anchor assignments for samples across categories that visually look different. The samples look very different (as
shown in (a) & (b)) and therefore the anchor assignments are also very different as shown in (c). Green cell → Anchor
assigned, Yellow → Anchor not assigned. Difference in anchor assignments indicated in red .

form an additional operation along the depth dimension for
each iteration (shown as v, u, ch respectively in the pseudo-
code below), thus computational complexity does not scale
quadratically with input. Let N,K represent the number of
samples and anchors respectively. The overall computation
time of Multi-SK is O(2×N ×K +K2) ≈ O(N ×K) as
N ≫ K; thus keeping the overall amortized time complex-
ity similar to vanilla SK.

3. Pseudo Code: Multi-Assignment Sinkhorn-
Knopp

Here, we present the pseudo-code for the proposed
Multi-SK algorithm.

# Multi-Assignment Sinkhorn-Knopp
def multi_sk(scores, eps, niters=10):
Q = exp(scores / eps)
Q /= sum(Q)
K, N, K = Q.shape
for _ in range(niters):

# Row normalization
v = 1 / sum(Q, dim=2, keepdim=True)
Q *= v
# Column normalization to enforce

# equal partition constraint N/K
u = (N/K) / sum(Q, dim=1, keepdim=True)
Q *= u
# Depth normalization for
# unique anchors per sample
ch = 1 / sum(Q, dim=0, keepdim=True)
Q *= ch

return (Q/sum(Q, dim=2, keepdim=True))

4. Qualitative Results
In this section, we present a fine-grained visual analysis

of the learned anchors in Sec. 4.1 and also show the distribu-
tion of samples across HT100M categories based on anchor
assignments in Sec. 4.2, followed by qualitative retrieval re-
sults in Sec. 4.4.

4.1. Fine-grained Anchor Analysis.

We show fine-grained analysis of the learned anchors be-
low. We compare the anchor assignments for the following
scenarios to demonstrate the effectiveness of anchors.

• Similar categories (Figure 2 at Main Text)
• Within a category (Figure 1)
• Different categories (Figure 2)
• Confusing samples (Figure 3)



For the purpose of this analysis, we visualize the anchor
assignments as binary assignments. However, during train-
ing we use soft anchor assignments.

In Figure 2 (Main text), we compare the anchor assign-
ments for samples from similar categories. It can be seen
that the videos are visually similar even though they belong
to different categories and the anchors learned are presented
in Figure 2 (Main text). We notice that the anchor assign-
ments for these two examples are able to capture the sam-
ple similarity. To be particular, all the assigned anchors ex-
cept for anchors 39 and 54 (as highlighted) are the same for
these two visually similar examples. This further validates
our claim that our proposed method can assign semantically
meaningful anchors without any explicit supervision.

Next, we analyze the anchors for samples within a cat-
egory as shown in Figure 1. Here, we observe that as the
samples vary within a particular category, so do the cor-
responding anchors. This validates the flexibility of our
multi-anchor based sample representation in modeling the
intra-class variance.

In Figure 2, we compare the anchor assignments for
videos from different categories and it can be seen that the
anchor assignments are very different as expected. This
shows that our anchor modeling does not collapse to a fixed
assignment rather it can model different classes differently.

Finally, in Figure 3, we compare anchor assignments for
confusing samples. Here, we show one such example where
the actual label is Car and other Vehicles while the video
contains frames similar to kitchen items as shown in Fig-
ure 3. We analyse both visual and textual anchors for this
sample. It can be seen that the visual anchors (Figure 3d)
for confusing car sample (Figure 3a) is closer to visual an-
chors for food sample (Figure 3c) while the text anchors
of confusing car sample is closer to the actual car sample
(Figure 3e). This shows that the textual anchors can rep-
resent the car concept which is missing in the visual data.
This demonstrates the effectiveness of our approach as is it
able to capture both visual similarity and textual similarity,
allowing flexibility across modalities.

4.2. Distribution of samples across categories in
HT100M

We compute the distribution of samples per category
based on anchor assignments to analyze the relationship of
anchors to semantic categories. In Figure. 4, we show the
distribution w.r.t single anchor and a pair of anchors. As
shown in Figure 4 (a), even a single anchor assignment is
grouping similar categories reasonably and 4(b) when fil-
tered based on pair of anchors, it is able to capture distinc-
tive aspects with the distribution specializing towards spe-
cific categories. This demonstrates that utilizing multiple
anchors for modeling relationship between samples helps
to capture both shared and unique aspects of the data.

Anchor Top Categories
0 Relationships, Youth, Family life
22 Finance & Business, Education
30 Food & Entertaining
56 Cars, Computers & Electronics

Table 8: Anchor Analysis: Top video categories for each
anchor.

4.3. Qualitative Anchor Analysis

Here, we provide additional anchor analysis. In the
above section, we show the distribution of samples per cat-
egory based on anchor assignments. In Tab. 8, we show top
video categories for different anchors on HT100M dataset.

4.4. Qualitative Retrieval Results

We present more qualitative Text-to-Video Zero-shot Re-
trieval results of our approach on both datasets in Fig. 5

5. Experimental Setup: Additional Details
Following previous works [9, 12, 3, 13], as visual back-

bone, we use a combination of ResNet-152 [6], pretrained
on Imagenet [4] and compute one 2D-feature (2048 dim)
per second, as well as ResNeXt101 [5] pretrained on Ki-
netics [2] to get 1.5 3D-feature (2048 dim) per second. We
temporally upsample 2D-features with nearest neighbors to
have the same number of features as 3D-features and con-
catenate them to obtain 4096-dimensional vectors. As the
text backbone, we use GoogleNews pretrained Word2vec
model [10] with 300-dimensional embedding per word.
These backbones are frozen and not finetuned during train-
ing. Following [3, 13], we use a trainable CNN with resid-
ual layers as an audio backbone and adapt the last two resid-
ual blocks to extract 1.5 4096-dimensional features per sec-
ond.



(a) a0TFVw0e8ws (Cars and other Vehicles)

(b) veDux28KY7w (Cars and other Vehicles)

(c) AebxjHox7E (Food and Entertaining)

(d) Video Anchor Assignments

(e) Text Anchor Assignments

Figure 3: Video and Text anchor assignments for confusing samples. Here (a) and (b) → samples from category Cars & Other
Vehicles and (c) → Food & Entertaining category in HT100M dataset. (a), (c) look visually similar hence the video anchor
assignments are similar. Interestingly, the text anchor assignments for (a), (b) are similar as our method is able to capture
the concept car from text which is missing in the video. Green cell → Anchor assigned, Yellow → Anchor not assigned.
YouTube IDs for videos with similar anchor assignments highlighted in red.



(a) (b)

Figure 4: Distribution of samples across categories in HT100M w.r.t anchor assignments. We show % videos per category filtered based
on (a) a single anchor assignment (b) a pair of anchor assignments. Even a single anchor can model relationships between categories
reasonably and similar categories are grouped together, and for a combination of 2 anchors the distribution gets skewed towards a single
category and models the relationships better.

“multi colored horses in
a barn and outside in the
snow” Match

“fox newscasters discuss
chris christie and his poll
numbers” Match

“a puppy is crawling down
some stairs” Match

“a person comes up in the
hill on a orange motor
bike and falls down” Match

“three woman doing a
fashion show to music” Match

Figure 5: Examples of Zero-Shot Text-to-Video Retrieval on MSR-VTT dataset. Each row consists of Textual Query, and
top-5 retrieved videos for our method. Match indicates correct video for the query.
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