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1. Additional results
Visit the project website https://szymanowiczs.

github.io/viewset-diffusion.html for more
visualisations of non-cherry-picked results of single-view
3D reconstruction and unconditional 3D generation across
all classes.

2. Minecraft Dataset
We provide further details on the Minecraft dataset we

contribute as part of this work, in particular: distribution of
camera poses, distribution of character articulation poses,
image backgrounds, validation images and visualisations of
both the training set and the ‘Ambiguous’ test set.
Cameras. Cameras are placed at a fixed distance from the
origin, are directed towards the origin and have identical fo-
cal lengths and principal points. Camera location is there-
fore parameterised by the azimuth and elevation angles that
it forms with the world x-axis (the radius is fixed). Yaw
and elevation are sampled randomly and independently for
each camera: azimuth is distributed uniformly in [0, 2π] and
elevation is distributed uniformly in [−π

8 ;
π
8 ].

Articulation. Characters have a fixed torso location and
orientation, facing in the direction of positive z-axis. Both
arms, both legs and the head are randomly and indepen-
dently articulated. Pitch of arms is distributed uniformly
in [−20◦, 45◦]; roll is distributed uniformly in [0◦, 10◦]
for the left arm and [−10◦, 0◦] for the right arm. Pitch
of legs is distributed uniformly in [−30◦, 30◦]; roll is dis-
tributed uniformly in [0◦, 10◦] for the left leg and [−10◦, 0◦]
for the right leg. Head pitch is distributed uniformly in
[−10◦, 10◦], head pith is distributed uniformly in [−5◦, 5◦]
and head yaw is distributed normally with mean 10◦ and
standard deviation 10◦.
Backgrounds. Character skins have varied colours, so
there is no single background colour on which all skins
clearly stand out from the background. Therefore, for each
example we choose a random background colour, with RBG
distributed uniformly in [0, 255]. The training examples

are available with the alpha channel, therefore allowing for
sampling of random backgrounds in every training iteration.
Testing examples are saved with a fixed, randomly chosen
background channels so that metrics are consistently mea-
sured between different training runs. Alpha channel was
not used in any way other than to apply randomly coloured
backgrounds, i.e. we did not use masks to aid network train-
ing.

Validation viewpoints. Each training example consists of
3 images and camera poses. In addition to the training im-
ages, each example (i.e. each articulated character) is asso-
ciated with a fourth image and camera pose which we do
not use for training (i.e. our network does not have access
to it). However, we can render the reconstructed character
from the unseen viewpoint and we use the error in that view-
point as the validation loss that approximates the quality of
3D shapes output by our method.

Samples. Fig. 1 shows random samples from the
Minecraft training dataset: 3 images per character, rendered
from different camera viewpoints. Fig. 2 shows samples
of test examples in the ‘Ambiguous’ test set. Ambiguities
can be due to occlusion, where one limb is occluded by the
torso. Another type of ambiguity is projective ambiguity,
i.e. from a frontal image it can be ambiguous if a leg is in
front of the body or behind the body. Finally, there are am-
biguities due to symmetry – from a side image it can be
ambiguous if the right leg is in front of the body and the left
leg is behind, or if it is the other way around. Samples in
the ‘Ambiguous’ test set exhibit more ambiguity than a ran-
domly chosen test set would. Our method shows the most
improvement on the ‘Ambiguous’ test set when compared
to baselines.

Reproducing. We release the dataset in the form of code
to run to exactly render the Minecraft dataset used for train-
ing, validation and testing.

https://szymanowiczs.github.io/viewset-diffusion.html
https://szymanowiczs.github.io/viewset-diffusion.html


Figure 1: Minecraft dataset – training samples. We show 24 random examples from the dataset. Each training example
consists of 3 images (shown) and associated camera poses.

3. Data
3.1. CO3D Preprocessing

The data normalisation protocol for CO3D [5] objects
aims to make objects approximately the same scale, place
them in the centre of the voxel grid and align them vertically
with the ‘world’ vertical direction.

1. Translation normalization. We find the centre of
mass of the point cloud x̄, shift the point cloud {x(i)}
so that its new centre of mass is at the world centre:
{x(i)}′ = {x(i) − x̄} and move the cameras accord-
ingly: T ′

w2c = x̄Rw2c + Tw2c.

2. Rotation normalisation. We estimate the world ’up’
direction by leveraging photographer’s bias, i.e. as-
suming that photos are taken with approximately zero
yaw. Under this assumption, the camera x-vector is ap-
proximately perpendicular to the world direction. We
form a matrix by stacking x-vectors of all cameras in
a sequence (normalized to 0 mean) and run Singular
Value Decomposition (SVD).

UΣV T = SV D([1, 0, 0]RT
w2c)

ŷ = V [0, 0, 1]T

SVD is only defined up to a direction ambiguity, there-
fore we set the world ‘up’ vector and the camera vec-
tors to point in the same direction, i.e. ensure that
ŷworld · ycam > 0 and flip ŷ if needed. We use the the

first camera for ycam but check that all cameras satisfy
ycam1 · ycam2 > 0 and exclude the sequence from train-
ing if that is not the case. We also verify that that our
assumption of the photographer’s bias is valid in a se-
quence by checking that σ2

1/σ
2
2 < σ2

2/σ
2
3 and exclude

a sequence if that is not the case. We find that most se-
quences pass these checks successfully therefore con-
firming our intuition about photographer’s bias. A vi-
sualisation of rotation normalisation is shown in Fig. 3.

3. Scale normalization. To normalise scale we first shift
the point cloud and cameras so that world centre is
halfway between the top and bottom of the point cloud
{x(i)}′′ = {x(i)}′ − (ymax − ymin). This has effec-
tively the same purpose as translation normalisation,
but most videos are taken from above an object, so the
point clouds are denser at the top of objects, meaning
the point cloud mean x̄ is nor an accurate object centre
in the vertical direction. Finally, we want the scale of
objects to be normalised across sequences, so we nor-
malise the scene by the maximum absolute value of
any point coordinate. The scaling factor s for a voxel
grid with side length d is

s =
d× 0.95

2× maxi||x(i)||∞
.

All point coordinates x(i) and camera locations are
scaled by factor s.

We verify that after the normalisation the distances of the



Figure 2: Minecraft ‘Ambiguous’ test set. We show 10
random examples from the ‘Ambiguous’ test set. In each
example, left image is the input conditioning and right im-
age is the ground truth testing view.

Figure 3: Rotation normalization. Red point cloud and
purple cameras correspond to the translation and rotation
aligned object. Blue points and green cameras correspond
to the object after translation normalization, before rotation
normalization.

cameras are in sensible locations. In particular, for a volume
of side length 1.2 (which we use) we filter out sequences
that have cameras very close to the centre, i.e. with camera
translation magnitude ||T ||2 < 0.85. These sequences cor-

respond to sequences with poor point cloud quality where
some cameras were incorrectly estimated to be very close to
the surface of the objects We also filter out sequences with
cameras very far from the centre, i.e. with camera transla-
tion magnitude ||T ||2 > 6.5. Such sequences correspond to
a failures in foreground / background segmentation which in
turn lead to background being included in the point cloud.
As a result, scaling using maximum point location results in
downscaling the scene too much.

Finally, some sequences in CO3D correspond to cameras
being moved in front of a screen displaying objects instead
of actual objects. We filter out such sequences by imposing
a minimum on standard deviation in depth values. In total,
filtering removes 99 sequences for the Hydrant class, 382
sequences for the Plant class, 293 sequences for the Vase
class and 473 sequences for the Teddy bear class. We do
not remove any testing sequences.

We rescale all images to 128×128 resolution. As the fo-
cal lengths and principal points are provided in Normalised
Device Coordinates, we do not need to rescale them when
scaling the images or rescaling the world size.

3.2. Pose encoding

We encode the camera pose information in the tensor we
pass to the network, similarly to 3DiM [8]. Each pixel RGB
value is appended with an embedding of length 6, hold-
ing the location of the camera origin in world coordinates
(length 3) and the normalised ray direction of the ray from
the camera origin through the pixel (also length 3). The
pose encoding is appended along the channel dimension to
the input RGB images.

4. Baselines

4.1. PixelNeRF

In PixelNeRF [10] we use learning rate of 1e − 5 and
use a batch size of 4 for CO3D data (corresponding to 132
images, as each batch contains 32 images of the same ob-
ject) and 32 for Minecraft data (corresponding to 96 images
as each batch contains 3 images of one object). We use
Softplus activation and tune the beta parameter that prevents
collapse into 0 density region - 1.0 for coarse network and
3.0 for fine network. We train for single-view reconstruc-
tion for 100k iterations for the Minens dataset and 600k it-
erations for CO3D datasets. We use 64 coarse samples and
64 fine samples at training time in the NeRF network for
Minens dataset and 128 coarse samples and 64 fine sam-
ples for CO3D data. We use the same normalised CO3D
data for PixelNeRF and for our method. For evaluation on
ShapeNet-SRN we use pretrained PixelNeRF models with
official evaluation code and metrics reported in the Pixel-
NeRF paper [10].



4.2. RenderDiffusion

See Table 1 for a summary of the baseline architectures,
using notation from Sec.3.5 in the main paper.

RenderDiffusion re-implementation (RD). We re-
implemented RenderDiffusion with the publicly available
information and we include the details and results here.
As in the original paper, we modified the U-Net [2, 6]
commonly used in diffusion models so that its output has
3nf channels and reshaped it to form a triplane. We used
nf = 32 channels and a two-layer rendering MLP, with 32
hidden units and an intermediate Softplus activation func-
tion. Training was done for the same number of iterations
as in our method with Adam [4] optimiser and the same
hyperparameters as in our method. The noise schedule
used was the same as in our method. We will release code
for RenderDiffusion re-implementation together with our
code.

RenderDiffusion++ (RD++). Our initial experiments
with the architecture that RenderDiffusion uses indicate that
the textures that RD outputs are low frequency and lack
high-frequency details present in the conditioning images,
likely due to the absence of local conditioning. Another
issue we noticed was that the shapes output by RenderDif-
fusion are not necessarily plausible, e.g. a reconstruction
of a Minecraft character with three legs, possibly because
the supervision in RenderDiffusion is single view. While
the reconstructions shown in the figures of RenderDiffusion
have plausible shapes, they are only demonstrated for sim-
ple shapes from ShapeNet and CLEVR datasets with little
ambiguity (i.e. a single image is enough to reconstruct the
3D shape, e.g. with symmetry constraints). Our Minecraft
dataset exhibits more ambiguity (e.g. due to articulation)
and thus the reconstructions output by RenderDiffusion are
an average between the different plausible shapes. Thus, for
fair comparison, we also compare to RD++: RenderDiffu-
sion, but with our architecture and with multi-view super-
vision. We train a network that receives a single image of
an object, with added Gaussian noise, and is tasked with
predicting a reconstruction of the clean object.

5. Technical details

5.1. Optimization.

We optimise the parameters of our network with
Adam [3] optimizer and learning rate 2 × 10−5. We
use batch size 16 and optimise all diffusion networks for
100k (ShapeNet) / 200k (Minecraft, Hydrant, Teddybear)
/ 256k (Vase) / 280k (Vase) iterations and the networks
without diffusion for 40k iterations. Timestep-dependent
weighting strategy w(σ(i)) is the Min-SNR-5 strategy [1]:
w(σ(i)) = min{SNR(i), 5}. SNR is the Signal-to-Noise
Ratio: SNR(i) = (1 − σ(i)2)/σ(i)2. Hyperparameter λ for

penalising unseen view is λ = 0.1 in Minens and ShapeNet
and λ = 0.2 in CO3D.

5.2. Diffusion.

We use a diffusion schedule with 1000 diffusion steps
and a cosine noise schedule. Our networks are trained
with “x0” formulation. At inference, we use 250 steps
of DDIM [7] sampling. Quantitative single-view recon-
struction results cited in the main paper were obtained with
N − 1 noisy views and 1 clean view in the viewset, where
N = 3 for ShapeNet-SRN, N = 4 for Minens and N = 5
for CO3D. For generation we used a the same models and
viewsets with the same size N , but without any clean views.
Varying numbers of images in the viewset are due to vary-
ing complexity of data and varying amount of ambiguity.

5.3. Architecture

Our architecture takes in N input frames, each of which
can be clean or noisy, and outputs one volume of size S ×
S × S. In Minecraft S = 32, in all other datasets S = 64.
Each entry in the output volume holds 4 values: 3 for RGB
colour and 1 for opacity.

Encoder. Each of the N images is first passed through
a small 2D CNN and an ‘Unprojector’ (Fig. 4, top left)
which pools the RGB colours from the image into a 3D
volume along camera rays. Next, each image is inde-
pendently passed through an encoder which contains a
series of 3D ResNet and MaxPool blocks (Fig. 4, bot-
tom). All convolutions are done with 3 × 3 × 3 kernels.
GroupNorm layers [9] with 8 groups are applied in ev-
ery ResNet block to the intermediate output (Fig. 4, top
right). There are 4 Convolutional Downscaling Blocks in
the encoder, outputting M = 5 feature maps for each of
N images Ii, i ∈ 1, . . . , N . We use channel dimensions
C1, C2, C3, C4, C5 = 64, 64, 128, 256, 512.

Aggregator. Given N feature maps Wj at level j com-
ing from N images (Fig. 5, left), the ‘Aggregator’ is tasked
with aggregating the features into one feature volume W ′

j

at level j (Fig. 5, right). Each feature volume is flattened
(Fig. 5, top left) and the flattened vectors are concatenated
along the sequence dimension, forming a tensor of size
N×HjWjDj×Cj , which is input to an Attention layer with
a GroupNorm layer and a residual skip-connection (Fig. 5,
bottom middle). Concatenated features Fj are input as the
Keys and Values to the attention layer, with the number of
frames N being the sequence dimension and the flattened
voxels being the batch dimension. Query volume Qj for
feature level j has size 1 × HjWjDj × Cj and comes ei-
ther from the previous layer of the decoder (next section) or,
for the lowest feature level, is learnt and is the same for all
inputs.



3D 3D 3D
Method Representation σt Ntrain Ninf λ = 0 Generation? Reconstruction

RD Triplane {σ̄t} 1 1 Yes Yes Deterministic
RD++ Grid {σ̄t} 1 1 No Yes Deterministic
Ours w/o D Grid {0}, {0, 0} 1-2 1 No No Deterministic
Ours D Grid {σ̄t}, {σ̄t, 0}, {σ̄t, σ̄t} 1-2 3-5 No Yes Generative

Table 1: Baseline methods. We summarise key differences of baselines which we compare Viewset Diffusion (Ours w D)
against. The methods vary in number of images used at input in training Ntrain and inference Ninf and what levels of noise
σt are applied to the input images during training. In some baselines the unseen view is not penalised λ = 0, only a subset of
them is able to perform 3D Generation and only our method performs 3D Reconstruction in a generative manner.
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Figure 4: Encoder. Each image Ii out of N images input to the reconstructor is first unprojected to 3D (top left) and passed
through a series of 3D ResNet Blocks (top right) and Max Pooling layers to output M = 5 feature maps W i

j .

Decoder and query volume. The decoder takes MN fea-
ture volumes as input: N feature volumes W 1

j , . . . ,W
N
j for

each of M feature levels j (Fig. 6, left). Additionally, it
takes as input a learnt feature volume QM which is identi-
cal for all inputs. At each feature level j, the decoder aggre-
gates feature maps (Fig. 5) W 1

j , . . . ,W
N
j using query vol-

ume Qj to output an aggregated feature volume W
′

j . Fea-
ture volumes Qj and W

′

j are upscaled, concatenated and
passed it through a 3D ResNet Convolutional Block (Fig. 6,

bottom right). Once feature maps from all levels have been
aggregated, the feature volume of size C1 ×H ×W ×D is
passed through a small 5-layer convolutional upscaling sub-
network. Finally, we apply a 1 × 1 × 1 non-activated con-
volution layer which outputs the radiance field v of shape
4×H ×W ×D.
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Figure 6: Decoder takes sets of feature maps at different levels and a learnt start query volume Q5. Feature volumes from
different images are aggregated, upscaled and passed through convolutional layers. After the features have been decoded,
they are passed through a single convolutional layer to output the radiance field v. Self attention layers SA are applied when
leading to Q4, Q3, Q2, but not when outputting Q1.
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