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1. Visualized Results
The computation is unevenly allocated among differ-

ent images when applying the proposed DToP, which at-
tributes computation cost to dissimilar recognition difficul-
ties. We present visualized examples for a simple illustra-
tion in Figure 1. We see that the reduction of computa-
tion cost in GFLOPs can be as high as 57.7% in simple-
scene images, such as the example in the first row that con-
tains only the building and sky. For complex-scene im-
ages where the object number increases and the scale varies,
fewer tokens trigger the early exit, and less GFLOPs reduc-
tion is obtained. Even though the computation cost fluc-
tuates among images, the segmentation accuracy remains
stable compared with the baseline results.

2. Downsampling Methods
DToP serves as an unsymmetrical downsampling oper-

ator by making an early exit of easy tokens. We compare
several commonly used symmetrical downsampling opera-
tors, including stride convolution, average pooling and near-
est sampling. We apply these operators at the end of the
9th layer of ViT-Base [1] backbone to ensure an approx-
imate computation overhead. The shrunk architecture in
SegViT [8] is also presented for comparison, which is con-
sidered an unsymmetrical downsampling method. Results
with the ADE20K dataset [9] are shown in Table 1. The
proposed DToP outperforms all symmetrical methods by a
large margin.

3. Comparison with Expedite-ViT
Expedite-ViT [3] proposes a token clustering layer to

merge similar tokens in the middle network to reduce com-
putations. And it adopts a corresponding token reconstruc-
tion layer to rebuild the original tokens before the final pre-
diction. The conceptual difference between our DToP and
Expedite-ViT is that DToP makes early predictions on easy
tokens by assessing all token recognition difficulties. Here
we summarize their experimental comparisons in Table 2
using the Segmenter [6] framework. Our DToP achieves

Ground-Truth

Ground-Truth

Ground-Truth

Ground-Truth

Baseline
Acc: 99.7%

GFLOPs: 617

DToP
Acc: 99.7% (+0.0%)

GFLOPs: 261
GFLOPs save: 57.7%

Baseline
Acc: 96.6%

GFLOPs: 617

DToP
Acc: 96.2% (-0.4%)

GFLOPs: 305
GFLOPs save: 50.6%

Baseline
Acc: 81.7%

GFLOPs: 617

DToP
Acc: 83.0% (+1.3%)

GFLOPs: 371
GFLOPs save: 39.9%

Baseline
Acc: 60.4%

GFLOPs: 617

DToP
Acc: 63.1% (+2.7%)

GFLOPs: 542
GFLOPs save: 12.2%

Figure 1: Visualised examples using ADE20K dataset. As
computing the intersection over union (IoU) is unreason-
able within a single image, we use the category-agnostic
pixel accuracy (Acc) instead. GFLOPs means float-point
operations in Giga. Best viewed in color.

superior performance on the Segmenter baseline.

4. Per-Category Results
We present in Figure 2 per-category scores on the Pascal

Context [5] dataset as an example. We observe that DToP
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Figure 2: Per-category scores on Pascal Context dataset with 59 classes excluding background.

Methods GFLOPs mIoU (%)

Baseline 109.9 49.7
Conv, stride = 2 88.4 44.8
2× 2 average pool 87.8 44.4
2× 2 nearest sampling 87.8 46.1
SegViT shrunk [8] 97.1 50.0
DToP (ours) 86.8 49.8

Table 1: Comparisons to standard symmetrical downsam-
pling methods under similar computation budget. All meth-
ods except baseline follow the @Finetune training scheme.

Method GFLOPs mIoU(%)

Segmenter [6] 129.6 49.6
+ Expedite-ViT [3] 100.5 48.9
+ ours (p0 = 0.90) 98.8 49.9
+ ours (p0 = 0.95) 106.5 50.3

Table 2: Comparisons with Expedite-ViT using ADE20K
based on Segmenter. ViT-Base is adopted as the backbone.

yields negligible performance impact on each category as it
finalizes easy tokens’ predictions instead of discarding then
rebuilding them and making predictions at the final layer.

5. Why Plain ViT

We focus our pruning method for semantic segmentation
on the plain ViT backbone [1] as it offers several advantages
over pyramid structures [4] or efficient transformers. The
plain ViT structure has the potential to unify multiple dense
prediction tasks and can be improved with more flexible
self-supervised methods [2, 7]. Additionally, it is capable of
connecting visual and language inputs, allowing zero-/few-
shot and continuous learning for dense prediction tasks. The
proposed dynamic pruning method enables a new paradigm
for using ViT in the future. This approach allows for a foun-

dation ViT to be trained on large-scale datasets yet still be
applied to various local datasets with flexible computational
reduction.
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