
Supplementary Materials for ElasticViT

A. Search Space Design
A.1. Mobile-friendly Transformer Block

Figure 1. Mobile-friendly transformer block in our search space.
Left: multi-head self-attention; for downsampling layer, we add
a MobileNetv3 block with kernel size of 3×3 before LayerNorm;
Right: MLP layer. During the supernet training, the input channel
number C, H , W , V scale ratio k and MLP ratio e are elastic.

To develop an attention layer that is not only mobile-
friendly (latency efficient) but also effective, we redesign
the attention layer based on LeViT and NASViT attentions.
Fig. 1 illustrates the architecture of our proposed mobile-
friendly attention blocks. We remove the latency-expensive
talking head, and increase the default QKV dimension to 16.
We use latency-friendly Hswish as the activation function.
Table 1 compares the latency on real-world mobile phones.
Our optimized attention can accelerate the inference latency
by > 2×, which greatly improves the transformer block
efficiency.

Table 1. Latency comparison of two Attention structures. Our
optimized attention can achieves > 2× latency reduction than
NASViT attention. HW=14×14, V scale=4, QK dimension=8.

Channel
Pixel 6 Pixel 4

NASViT Our Attention NASViT Our Attention
(ms) (ms) ↓ (ms) (ms) ↓

64 3.66 1.75 (-52.2%) 5.89 2.89 (-50.9%)
96 6.52 2.98 (-54.3%) 10.76 5.18 (-51.8%)
112 8.14 3.58 (-56.1%) 13.42 6.22 (-53.7%)

A.2. Macro Space Design

Our search space includes 6 searchable stages, start-
ing with a stem Conv layer for initial processing of input

data, and ending with a classification head for final predic-
tion. For the 6 searchable stages, we adopt a Convolution-
Transformer (C-T) setting, where the first 2 stages are Conv
stages and the later 4 stages are the Transformer stages.

Table 2. Results for 3 C-T ratio settings. Our paper adopts the 2:4
settings, which use 2 Conv stages and 4 Transformer stages.

C-T Stage Ratio
Top-1 Accuracy

500 MFLOPS 600 MFLOPS

2:4 69.9% 70.4%
3:3 69.1% 69.5%
4:2 67.7% 67.9%

In our experiments, we observe that the allocation of
2:4 Conv Transformer stages is the most effective in lever-
aging the benefits of the transformer while ensuring effi-
ciency. Placing too many Transformers in the early stages
(e.g., C-T ratio = 1:5) results in unacceptable model com-
plexity due to the quadratic complexity of the self-attention
module. On the other hand, incorporating too many Convo-
lution stages (e.g., C-T ratio = 5:1) fails to leverage the ad-
vantages of the Transformer architecture, thereby hindering
performance gains. Therefore, the three feasible solutions
are 2:4, 3:3 and 4:2.

Table 2 compares the search space quality under the
above three C-T ratio settings. Specifically, each supernet is
trained for 100 epochs to reduce training cost. We conduct
a FLOPs-constrained evolutionary search to find the best
subnets under 500 and 600 MFLOPs. The results in Table 2
indicate that C-T ratio = 2:4 consistently outperforms other
settings under the same FLOPs constraints, making it the
preferred option for our large C-T ratio setting.

A.3. Overall FLOPs-Latency Relationship

Figure 2. FLOPs-Latency relationship in the very large space.

Figure 2 depicts the FLOPs-Latency relationship in our
very large space. We randomly sample 1000 models from
the search space and calculate Kendall’s tau coefficient. The
results show a strong positive correlation between FLOPs
and latency in our very large space, which serves as a basis
for using FLOPs as a complexity metric in the main paper.

B. Transformer Stages Preference

Figure 3. Boxplot visualization of best-searched 50 models from
NASViT search space. The y-axis lists out the available choices
for the corresponding search dimension. For small FLOPs regime,
the top models choose the minimal depth of 3 in Stage 3, 4 and 5;
top models choose the maximum width of 184 in Stage 5.

In Section 4, we introduce our proposed path preference
rule, which is informed by the insights from recent stud-
ies [2, 3]. These studies have shown that in pure ViT mod-
els, the later Transformer stages tend to prioritize wider
channels over more layers, as compared to CNN models.

To investigate whether this principle holds for hybrid
models as well, we analyze the architectures of the best
models generated by NASViT and make the following ob-
servation: The ViT stage in hybrid models prefers wider
widths and shallower depths.

Fig. 3 visualizes the depths and channels of top 50 mod-
els. Specifically, we perform evolutionary search to explore
5k models and select top 50 with the highest accuracy for
analysis. Surprisingly, even allowed to set a deeper depths,
our results suggest that top models at 300M FLOPs choose
the minimal depth choice of 3 in the 3 ViT stages. We also
observe an interesting phenomenon in Stage 5. Both 300M
and 500M top models choose the largest width choice in
Stage 5. In summary, the top-performing hybrid models
prefer wider widths and shallower depths in ViT stages.

These observations also suggest that the existing search
space design for ViT stages are suboptimal. In our search
space, we enlarge the maximum choice of widths and add
smaller depths choices for ViT stages. To include tiny ViTs
for weak devices, we also add many small choices for each
search dimensions. As a result, our search space contains
a huge number of 1.09 × 1017 candidate models, which is
107× of previous search space.

C. Search Space Size Comparison
Table 3. Search space size comparison. ∗: we adopt stage-wise
kernel sizes and expand ratios to compute search space size.

Search Space type Size∗ Min model
FLOPs

Max model
FLOPs

OFA CNN 3.6× 109 88M 1005M
BigNAS CNN 5.8× 108 219M 1900M
NASViT ViT 3.09× 1010 190M 1881M

Ours ViT 1.09× 1017 37M 3191M

Search space size comparison. To accommodate both
weak and strong mobile devices, we design a very large ViT
search space that covers a wide range of models, from 37 to
3191 MFLOPs. Table 3 provides a quantitative compari-
son of search space sizes, showing that our search space is
107× larger than typical search spaces used in two-stage
NAS. This exponential increase in size presents significant
optimization challenges, as discussed in the main paper.
FLOPs difference. Next, we discuss the impact of FLOPs
difference in the very large space to the sandwich rule.

Figure 4. The sizes of two subnets sampled from a very large
search space can vary greatly. The FLOPs differences are com-
puted by randomly sampling 50k subnets from two search spaces.

As introduced in the main paper, the sandwich rule sam-
ples a minimum and maximum subnet, as well as two ran-
domly selected subnets for supernet training at each step.
While this technique is generally effective in a typical
search space, it can lead to the sampling of subnets with sig-
nificantly different FLOPs, which can cause gradient con-
flicts. As shown in Fig. 4, randomly sampling two subnets
from our search space can easily lead to a FLOPs differ-
ence of more than 700M, where the gradient similarity is
often close to 0.

D. Memory Bank Update Strategy.
We adopt the Worst-Performing strategy to replace the

subnet in the memory bank. Namely, only the least accurate
subnet in the memory bank will be replaced, if a subnet sit
at step t satisfies

ACC(sit) ≥ argmin
α

{α|α = ACC(s), s ∈ Bi}, (1)

the architecture α will be replaced, otherwise the memory
bank will not be updated. And the accuracy ACC(·) is ap-

proximated by the cross-entropy loss on a mini-batch.

E. Details of the Hierarchical Smallest Subnets
(HSS) Set

To obtain the HSS set without prior knowledge, we first
train a meta super-network without proposed method, using
the very large search space. To save training costs, we only
train the meta supernet 100 epochs.

We use this meta supernet as the accuracy indicators and
conduct architecture search on it with two pre-defined com-
plexity levels: 150 MFLOPs (referred as min2) and 300
MFLOPs (referred as min3). Accordingly, the space from
the original smallest sub-network in the very large space
(referred as min1) to min2 is used to search for weak mo-
bile devices (e.g., Pixel1), the space from min2 to min3
is used to search for neutral mobile devices (e.g., Pixel4),
and the remaining space (≥ min3) is used to search for
strong mobile devices (e.g., Pixel6). Hence, the HSS set
Ŝ = {min1,min2,min3}. We provide the configurations of
min2 and min2 in Table 5.

F. Training Settings

We use AdamW optimizer with a cosine learning rate
scheduler, the initial learning rate is set to 5e-4. The total
training epochs are set to 600, and the first 5 epochs are
used to warm-up with a minimum 5e-6 learning rate. We
set the mixup alpha to 0.01 (rather than the default value
0.8), as well as the cutmix alpha to 0.01, and we do not
adopt the autoaugment. We only adopt heavy regularization
(e.g., weight decay of 0.05) for Transformer stages [4, 1].
All experiments use 16 NVIDIA V100 GPUs (32G GPU
memory) and the PyTorch training system, the batch size is
96 per GPU.

For super-network hyper-parameters, the num-
ber of stochastic sub-networks M at every iter-
ation is set to 3. We use the complexity levels =
{50, 100, 200, 300, 400, 500, 700, 900, 1200} MFLOPs.
We set the size of each memory bank Bi to 150. The
memory bank sampling probability is set to 0.2 initially
and increases 0.15 every 100 epochs.

FLOPs table. In the supernet training process, our
complexity-aware and performance-aware sampling meth-
ods involve selecting a subnet with a specific FLOPs level.
However, due to the large search space, the cost of sampling
a subnet under a FLOPs constraint can become expensive
and slow down the training process. To reduce this cost, we
construct a FLOPs table. Specifically, we randomly sam-
ple 150k subnets for each FLOPs complexity level, which
enables us to quickly sample subnets during training.

Table 4. Comparison of subnets with inherited weights and fine-
tuned (30 epochs) under different hyperparameters.

Model
Inherit Finetune

supernet weights lr=5e-5 lr=5e-6 lr=5e-7
ElasticViT-T2 73.8 72.4 73.6 73.4
ElasticViT-S2 78.6 76.4 77.8 77.9
ElasticViT-L3 80.0 78.2 79.5 79.5

G. Finetuning Experiments
We select three different-sized models and fine-tune

them for an additional 30 epochs using different learning
rates. We follow BigNAS to set learning rates 10x, 100x,
and 1000x smaller than our supernet training rate of 5e-
4. Table 4 shows that further fine-tuning does not improve
accuracy. This suggests that our supernet training allows
subnets to be well-trained within supernets, meaning that
searched models do not require fine-tuning.

H. Visualization of Searched Models
The architectures of our searched model family are pre-

sented in Table 5. Notably, these top-performing models ex-
hibit a characteristic of wider widths and shallower depths
for ViT stages. This finding demonstrates the effectiveness
of our proposed path preference rule.

Table 5. Architecture details. “C”, “D”, “K”, “E”, “V” and “M” represent channels, depths, kernel size (CNN stages), expansion ratio
(CNN stages), V scale (Transformer stages) and MLP ratio (Transformer stages), respectively.

Model min2 min3 T1 T2 S1 S2 M L1 L2 L3

FLOPs 159 288 50 100 200 300 400 500 700 800

Resolution 176 224 128 160 192 224 224 256 256 256

MBv2

C=16
D=1
K=3
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=5
E=1

C=16
D=1
K=5
E=1

C=16
D=1
K=3
E=1

C=16
D=1
K=5
E=1

MBv2

C=24
D=3
K=3
E=3

C=24
D=3
K=3
E=3

C=24
D=2
K=3
E=3

C=24
D=2
K=3
E=3

C=24
D=3
K=3
E=3

C=24
D=3
K=3
E=3

C=32
D=3
K=3
E=3

C=24
D=3
K=5
E=3

C=24
D=3
K=3
E=6

C=32
D=3
K=3
E=5

MBv3

C=32
D=3
K=3
E=3

C=32
D=3
K=3
E=3

C=32
D=3
K=3
E=3

C=40
D=3
K=3
E=3

C=40
D=3
K=3
E=3

C=48
D=3
K=3
E=3

C=48
D=5
K=3
E=3

C=40
D=3
K=5
E=6

C=40
D=4
K=3
E=6

C=48
D=4
K=5
E=5

Transformer

C=48
D=2
V=2
M=2

C=64
D=2
V=2
M=2

C=64
D=1
V=2
M=2

C=48
D=1
V=2
M=3

C=64
D=2
V=2
M=2

C=64
D=2
V=2
M=2

C=64
D=2
V=2
M=2

C=64
D=2
V=2
M=4

C=80
D=2
V=2
M=3

C=80
D=2
V=2
M=4

Transformer

C=96
D=2
V=2
M=3

C=96
D=2
V=2
M=2

C=96
D=1
V=2
M=2

C=96
D=1
V=2
M=4

C=96
D=2
V=2
M=2

C=96
D=2
V=2
M=2

C=96
D=2
V=2
M=4

C=96
D=2
V=2
M=3

C=128
D=2
V=2
M=2

C=128
D=2
V=2
M=4

Transformer

C=176
D=2
V=2
M=2

C=192
D=2
V=2
M=2

C=176
D=1
V=2
M=3

C=176
D=2
V=2
M=3

C=192
D=2
V=2
M=3

C=192
D=2
V=2
M=2

C=192
D=2
V=2
M=4

C=192
D=2
V=2
M=4

C=256
D=2
V=2
M=3

C=256
D=2
V=2
M=3

Transformer

C=224
D=2
V=2
M=2

C=256
D=2
V=2
M=2

C=272
D=1
V=2
M=4

C=256
D=2
V=2
M=2

C=272
D=2
V=2
M=4

C=256
D=2
V=2
M=4

C=288
D=2
V=2
M=5

C=320
D=2
V=2
M=4

C=304
D=2
V=3
M=5

C=320
D=2
V=2
M=5

References
[1] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,

Pierre Stock, Armand Joulin, Herve Jegou, and Matthijs
Douze. Levit: A vision transformer in convnet’s clothing for
faster inference. In Proc. of ICCV, 2021. 3

[2] Namuk Park and Songkuk Kim. How do vision transformers
work? In Proc. of ICLR, 2022. 2

[3] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,

Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Proc. of
NeurIPS, 2021. 2

[4] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers and distillation through at-
tention. In Proc. of ICML, 2021. 3

