Make-It-3D: High-fidelity 3D Creation from A Single Image with Diffusion Prior
Supplementary Material

A. Broad Impact

We have presented Make-1t-3D, a novel approach to
create novel views from a single image of general genre.
Make-It-3D first hallucinates the 3D geometry by the usage
of depth prior at the frontal view and the geometry prior of
a pretrained diffusion model to ensure plausibility at novel
views. Motivated by the fact that human eyes are more sen-
sitive to texture over geometry, we thus reuse the coarse 3D
geometry estimated from the implicit representation as well
as the texture from the reference image, and specifically “in-
paints” the texture of explicit 3D representation at occluded
regions, ultimately producing compelling novel view ren-
derings with highly-detailed texture.

Our primary aim is to advance the research of genera-
tive modeling from 2D to 3D. Without relying on 3D train-
ing data that is hardly accessible in scale, this work tack-
les the 3D synthesis problem by lifting 2D generated im-
ages to 3D. This way essentially builds on the assumption
that a diffusion model not only generates 2D observations
but also implicitly contains rich 3D understanding of the
scene. Thus, using our technique, one can generate a 3D
scene that can be immersively viewed by merely using a 2D
diffusion model. Compared to DreamFusion and Magic3D,
our work produces more diverse 3D synthesis results with
significantly improved realism. On top of creatively gener-
ated images, this work also performs well on real images
with complicated structures.

We hope this work opens the door towards high-quality
3D synthesis and inspires more following works along this
way. While we have demonstrated the ability to synthesize
novel views in 360 degree, it is still non-trivial to produce
holistically plausible 3D objects when viewed from large
viewpoints. Moreover, while this work aims for 3D synthe-
sis from a single image, the same pipeline is applicable to
the few-shot scenario where a few multi-view images can
be obtained. In addition, it would be fruitful to generalize
the proposed technique to augment the quality of 4D syn-
thesis. We will release the code to facilitate the research in
this emerging area.

B. Additional Implementation Details
B.1. Coarse stage

Scene representation and rendering. We use the explicit-
implicit representation from Instant-NGP [2] to implement
the NeRF representation in the coarse optimization stage,
where we choose 16-level hash encoding of size 2'° and
dimension 32, with a 3-layer MLP with 64 hidden units to
decode the density and color for each spatial location. Dur-
ing volumetric rendering, we sample 96 points for each ray,
including 64 points for uniform sampling and 32 for impor-
tance sampling. We initialize the density field as a Gaus-
sian sphere, which leads to faster convergence and more
stable training. Specifically, we initialize the density as
oimie = d * exp(—||x||*/(2u?)), where we set density bias
d = 5 and ¢ = 0.2; x denotes the distance between the ray
point and the scene center.

Camera setting. Following the camera sampling method
used in [3], we randomly sample camera distance from 0.8
to 1.2, and the field-of-view (FOV) from 40 to 80 degrees.
We find that randomly sampling FOV is instrumental to mit-
igate the artifacts that arise in large rendering view angles.
Augmentation and Regularization. To encourage the net-
work to focus more on the foreground and avoid adversarial
samples that hack the pretrained diffusion model, we train
NeRF with a random background augmentation. Specifi-
cally, during training, we randomly jitters the background
color of both the reference alpha image and NeRF render-
ing. During inference, we render the scene with a white
background. Furthermore, following [3], we use three types
of geometric regularization including sparsity, opacity and
smoothness.

B.2. Refine stage

Point cloud rasterization. Following [1], we rasterize
neural points V' to multi-scale feature maps S(i,V), i €
[0, K), K = 3. We use a differentiable point rasterizer im-
plemented by PyTorch3D [4] to assign every pixel a neural
descriptor and a binary scalar that indicates a non-empty
pixel. We consider the binary mask as a point-based occu-
pancy mask.

Background regularization. To handle pixels without cor-
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Figure 1: Analysis of SDS and CLIP-D loss.

| LPIPS|  Contextual|]  CLIPt
SDS 0.3045 2.29 86.04%
CLIP-D 0.1260 243 80.27%
SDS+CLIP-D | 0.2772 232 84.01%
Thresh=300 0.1757 2.19 87.40%
Thresh=400 0.1427 1.74 87.50%
Thresh=500 0.1696 2.23 86.09%

Table 1: Ablation study on SDS and CLIP-D loss on the test
benchmark. We compute LPIPS under the reference view,
and the other two metrics under novel views. “Thresh” de-
notes the boundary of time steps using SDS or CLIP-D in
the denoising process.

responding point cloud projection, we assign a learnable de-
scriptor as the background. During texture enhancement
optimization, we additionally add a regularization to en-
courage the scene to be rendered with a white background
according to the binary occupancy mask mentioned above.

Deferred neural rendering. For deferred rendering of the
point clouds, we use a 2D U-Net architecture with gated
convolutions [5]. It contains 3 down- and up-sampling lay-
ers to integrate multi-scale feature maps and output the final
RGB image.

C. Additional Ablation Study and Analysis
C.1. Analysis of SDS and CLIP-D loss

As mentioned in Sec 3.1, in the coarse stage, we use
the diffusion prior by applying score distillation sampling
(SDS) scheme on novel view renderings. It can successfully
encourage the generated scene to match the conditioned text
prompt. However, as an image-based 3D content creation
model, we need to prioritize the faithfulness between cre-
ated 3D and the reference image. Although we add pixel-
wise constrain under the reference view for optimization,
SDS provides a strong geometric prior and enforces the op-
timized scene to be a plausible result according to the text
condition. Constraints under a single view can be limited.
Thus the created results may not be rigorously aligned with
the reference image (See Figure 1).

Therefore, we need to relax the strong geometric guid-
ance provided by SDS and add more image-level constraints
under multi-views. We achieve this goal by simultaneously
maximizing the image-level similarity between the refer-
ence image and the novel view renderings denoised by the
diffusion model, named as a diffusion CLIP loss Lcyip.p.
Compared with introducing this constraint directly on novel
view renderings, the CLIP-D encourages the pretrained dif-
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Figure 2: Analysis of the time step range in SDS process.
We visualize novel view results in the coarse stage that are
trained with different time step ranges (from start to end).
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Figure 3: Analysis of texture initialization and point de-
scriptors.

fusion model to provide better guidance to generate more
faithful 3D content with the reference image.

In view of this, we conduct several experiments to study
the effect of SDS and CLIP-D loss during optimization,
which is shown in Figure |. Results show that using only
SDS generates high-quality and plausible geometry, but the
optimized 3D does not align with the image. On the con-
trary, using only CLIP-D preserves the appearance of the
reference image, but fails to generate good geometry. A
simple solution is to combine the two losses, but this does
not fully address the non-alignment issue. To achieve a bal-
ance between geometric quality and appearance alignment,
we introduce an optimization strategy by setting a thresh-
old of sampling steps. Specifically, we optimize CLIP-D
loss at small timesteps and optimize SDS at large steps. We
conduct several qualitative and quantitative studies on dif-
ferent threshold settings, which are shown in Figure | and
Table 1. During training, we randomly sample noise step T’
from 200 to 600, and we find that T = 400 could balance
the geometric quality and the appearance alignment.

C.2. Analysis of various sampling time step ranges

We also investigate the effect of various sampling time
steps in SDS process. The experimental results are shown
in Figure 2. We conduct several experiments using differ-
ent sampling ranges. We observe that adding noise at large
time steps can improve the geometry quality but reduce the
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Figure 4: Failure cases due to the geometry ambiguity.

alignment and potentially saturate textures. And the diffu-
sion prior does not provide adequate supervision at small
time steps. In our method, we exclude small and large time
steps and instead randomly sample time step 7" from 200 to
600.

C.3. Analysis of texture initialization and point de-
scriptors

We conduct ablation studies on texture enhancement pro-
cess. We explore the importance of the initialized unseen
texture from NeRF and point descriptor. The qualitative re-
sults are shown in Figure 3. We can see that texture initial-
ization is crucial for global texture enhancement. And only
optimizing point color without descriptor outputs artifacts
and cannot produce reasonable results.

D. Additional Results

In this section, we provide additional results of creat-
ing 3D models from different reference images using our
method. The results are shown on Figure 5, Figure 6, and
Figure 7. Results show that our method has a strong ability
on creating high-fidelity 3D content including high-quality
geometries and textures using a single reference image.

E. Limitations

Our method suffers from some geometry ambiguity, such
as Janus problem or over-flat geometry [3]. A depth prior
can reduce this issue. However, since we only add depth
constrain at a single view, the geometry ambiguity may still
exist under other views. We show some failure cases in
Figure 4.

References

[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graphics.
In Computer Vision—-ECCV 2020: 16th European Conference,



Figure 5: Additional results by Make-It-3D. The first column is the reference image. We show high-fidelity results including
normal maps under the reference view and novel views.



Figure 6: Additional results by Make-It-3D. The first column is the reference image.
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Figure 7: Additional results by Make-It-3D. The first column is the reference image.
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