
[Supplementary] Multiple Instance Learning Framework with Masked Hard
Instance Mining for Whole Slide Image Classification

1. Additional Visualization

Here, we attempt to further analyze the impact of
Masked Hard Instance Mining (Masked HIM) on WSI clas-
sification algorithms based on multiple instance learning.
As shown in Figure 1, we visualize the masked instances
(middle column), which we call the mined hard instances,
to illustrate the relationship between the instance-level tu-
mor prediction probability (cyan patch) and model attention
(bright patch) before and after Masked HIM training.

First, thanks to the outstanding saliency patch mining
ability of traditional attention-based MIL models, Masked
HIM can effectively mask out the most salient regions to
indirectly mine hard instances while using random masking
to mitigate over-fitting problems. Moreover, as shown in
the Figure 2, this discriminatory power improves gradually
during the training. To ensure that the instance sequence af-
ter masking still retains key instance information related to
the slide category, we propose a randomization technique,
which will be explained in detail in the following subsec-
tion. Second, contrary to intuition, MIL models do not
lose their discriminative power for key regions after mask-
ing out the most salient instances, due to the MHIM-MIL
framework. Instead, they achieve a significant improve-
ment. Figure 1 strongly proves that focusing only on salient
instances during the training stage damages the discrimina-
tive power of MIL models, and verifies the huge help of hard
instances for MIL model training. Moreover, we visualize
the instance patch attention after softmax, which can be re-
garded as the contribution to the final bag embedding. We
find that although traditional MIL models seem to pay at-
tention to salient regions, they do not make reasonable use
of this part of the information. They ignore most features
and extremely focus on individual features in the feature ag-
gregation process, damaging model discriminativeness. In
contrast, MIL models trained with Masked HIM seem to
put more attention on more “irrelevant regions”, but better
utilize key region features to generate higher quality bag
features and improve model performance.

Figure 9 shows more patch visualizations on the
CAMELYON-16 dataset.
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Figure 1: Comparison of patch visualization produced by
AB-MIL [5] (baseline) and MHIM-MIL. The blue lines out-
line the tumor regions. The brighter patch indicates higher
attention scores. The cyan colors indicate high probabili-
ties of being tumor for the corresponding locations. Ide-
ally, the cyan patches should cover only the area within the
blue lines. In the middle column, the dark patches denote
masked instances.

2. Additional Quantitative Experiments

2.1. More on Masked Hard Instance Mining

Discussion on Mask Ratio. We explored how various mask
ratios affect MHIM-MIL training in this section. We fixed
other ratios (βr, βl) and varied high attention mask ratio βh
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Figure 2: Patch visualization during iteration process.
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Figure 3: The performances of MHIM-MIL under different
high attention mask ratio βh.

alone in Figure 3. We fixed βh and changed different βr and
βl in Table 1. Our findings are: 1) A low βh reduces the dif-
ficulty of mined instances, thereby diminishing the overall
model performance. Moreover, the randomized trick en-
sures that the model training does not collapse even at high
βh. More details are provided in the following section. 2)
Compared to AB-MIL [5], TransMIL [8] has lower discrim-
inative power for salient instances. This is why TransMIL
needs a bigger βh. 3) MHIM-MIL training is less sensi-
tive to βr and βl than to βh. However, choosing an appro-
priate mask ratio is still crucial for optimal performance.
Specifically, we observed that combining three strategies on
the CAMELYON-16 dataset decreases classification perfor-
mance. We attribute this to excessive instance masking los-
ing important information on the CAMELYON-16 dataset.
Computational Cost. Here, we comprehensively discuss
the impact of different MHIM strategies on the compu-
tational cost of model training. Table 2 shows the effi-
ciency gains brought by large-scale low-attention masking
and random-attention masking. This is especially signif-
icant for TransMIL [8], a baseline with both spatial and
temporal complexity quadratic to the number of instances.
Large-scale masking greatly reduces the input of the student
model, thereby reducing memory and time consumption.
Although the input of the teacher model is still full length,
due to the application of momentum teacher, it hardly in-
troduces extra training cost. In addition, we also find that
mixing multiple strategies further reduces the number of in-
stances but also introduces additional computation, which

random ratio low ratio AUC

AB-MIL
60% 20% 94.57
70% 10% 94.65
70% 20% 94.97
70% 30% 94.55
80% 20% 94.49

TransMIL
50% 20% 94.60
60% 10% 93.97
60% 20% 94.87
60% 30% 94.37
70% 20% 94.60

(a) TCGA Lung Cancer dataset

random ratio low ratio AUC

AB-MIL
40% 0% 95.90
50% 0% 96.14
50% 20% 95.92
60% 0% 96.13

TransMIL
0% 70% 96.36
0% 80% 96.49
20% 80% 96.33
0% 90% 96.10

(b) CAMELYON-16 dataset

Table 1: Comparison of different random attention mask
ratio βr and low attention mask ratio βl on both datasets.

is more obvious on AB-MIL [5] baseline.
Mask Ratio Decay. The discriminative ability of the model
improves and stabilizes as training goes on. We follow
the learning rate decay idea and tune βh based on train-
ing progress to prevent a high initial ratio from hurting
later training. We name this technique mask ratio decay
and adopt a classic cosine decay function to regulate de-
cay speed. Table 3 demonstrates that this trick significantly
boosts performance. We note that we apply the decay strat-
egy only to βh while maintaining initial values for the other
two ratios during training.
Randomly High Attention Masking. MHIM faces a ma-
jor challenge: it may mask all key information and turn into
“error instance mining”. We apply the Randomly High At-
tention Masking technique to address this issue and make
sure that mined hard instances include key instance infor-
mation for the slide category. Figure 4 illustrates our ap-
proach: we select instances with the highest 2 × βh% at-
tention scores as candidate states and randomly mask half
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Model C16 TCGA Para. Time Mem.

AB-MIL 94.00 93.17 657K 4.0s 2.4G
HAM 95.68 93.83 657K 4.0s 2.7G
R-HAM 96.14 94.79 657K 4.3s 2.3G
L-HAM 95.81 94.33 657K 4.2s 2.3G
LR-HAM 95.92 94.97 657K 4.4s 2.2G

TransMIL 93.51 92.51 2.67M 13.1s 10.6G
HAM 95.90 94.54 2.67M 15.9s 10.3G
R-HAM 95.88 94.60 2.67M 10.3s 5.5G
L-HAM 96.49 94.67 2.67M 10.1s 5.5G
LR-HAM 96.33 94.87 2.67M 10.1s 5.4G

Table 2: Comparison of time and memory requirements of
different masked hard instance mining strategies. We report
the model size (Para.), the training time per epoch (Time),
and the peak memory usage (Mem.) on the CAMELYON-
16 dataset (C16).

Strategy CAMELYON-16 TCGA

AB. Trans. AB. Trans.

βh% 96.04 96.07 94.34 94.56
βh% → 0% 96.14 96.49 94.97 94.87

Table 3: Comparison results of applying high attention
mask ratio decay.
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Figure 4: Illustration of Randomly High Attention Masking
(Randomly HAM).

of them to keep some key information. Table 4 demon-
strates this technique suffers from low training difficulty in
the TCGA dataset, where the tumor area ratio is high (typi-
cally over 40% [8]), and impairs the discriminability of the
model. On the other hand, this technique performs well on
the CAMELYON-16 dataset, indicating that it can preserve
key information in original instances.

2.2. Initialization of Student Network

MIL models typically employ a fully connected layer
to project original 1024-dimensional instance features into
512 dimensions as final instance representation. In MHIM-
MIL, we initialize the fully connected layer of the student

Strategy CAMELYON-16 TCGA

AB. Trans. AB. Trans.

w/o Ran. HAM 95.71 96.37 94.97 94.87
w/ Ran. HAM 96.14 96.49 94.52 94.17

Table 4: Comparison results of applying randomly high at-
tention masking (Ran. HAM).

network with pre-trained parameters to reduce collapse risk
from the Siamese structure. [1] elaborates on more details
about collapse risk. Figure 5 illustrates how this initial-
ization affects teacher model performance. An uninitial-
ized student model has slow initial training which drags
down teacher model performance and harms the iterative
optimization of the framework. The upper part of Table 5
displays a large margin in final student model performance
with and without this initialization. Moreover, we applied
the same initialization to mainstream MIL models to in-
vestigate if this initialization boosts performance by aiding
Siamese structure optimization. The upper part of Table 5
reveals that this initialization does not noticeably enhance
the performance of existing mainstream MIL models and
sometimes lowers it. Our experiments confirm that initial-
izing the first fully connected layer of student facilitate the
iterative optimization of the MHIM-MIL framework instead
of being a universal trick for increasing MIL model perfor-
mance.

Model CAMELYON-16 TCGA

AB-MIL w/ init 93.98 (-0.02) 92.75 (-0.42)
MHIM-MIL w/ init 96.14 (+0.63) 94.97 (+0.49)

TransMIL w/ init 94.22 (+0.71) 93.36 (+0.85)
MHIM-MIL w/ init 96.49 (+0.90) 94.87 (+0.95)

w/ init
CLAM-SB 94.53 (-0.12) 93.43 (-0.24)
DSMIL 94.96 (+0.39) 93.93 (+0.22)
DTFD-MIL 95.23 (+0.08) 93.80 (-0.03)

Table 5: Comparison results of different initialized MIL
models.

2.3. Transformer Attention

Transformer typically consists of a multi-layer multi-
head structure where each head within each layer generates
independent attention scores. Thus, extracting the most ef-
fective attention score among them is very challenging. In
particular, the baseline model TransMIL [8] comprises two
layers with eight heads per layer. We separately examined
the effect of attention scores from different layers and vari-
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Figure 5: Performance comparison of teacher models under
initialized or uninitialized student networks.
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Figure 6: Illustration of averaging and voting multi-head
attention fusion strategy.

ous multi-head fusion strategies. The upper part of Table 6
demonstrates the advantage of attention scores from the
first layer over those from the final layer. We attribute this
to the first layer producing more accurate attention scores
for identifying hard instances. This is because the multi-
head self-attention (MSA) operation modifies original fea-
tures which causes a large deviation between hard instances
mined by the last layer and the actual situation, while only
the input of the first layer is the original instance features.

Additionally, prior work [3] equalizes the contribution of
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Figure 7: Attention visualization of different heads in
TransMIL first layer.

each head and distributes the total mask count among dif-
ferent heads, which is called “averaging”. However, this
strategy fails to prevent the effect of the invalid heads on
MHIM. As shown in Figure 7, some heads of TransMIL
lack discrimination ability for instances and produce identi-
cal attention scores which we term as invalid heads. Invalid
heads dilute localization accuracy for hard instances under
averaging strategy and impair the training of MHIM-MIL.
To mitigate this issue, we suggest a voting strategy that em-
ploys majority rule to eliminate noise from invalid heads,
as shown in Figure 6. The lower part of Table 6 proves the
effectiveness of this strategy.

case CAMELYON-16 TCGA

first 96.49 94.87
last 95.58 (-0.91) 93.90 (-0.97)

averaging 96.38 (-0.11) 94.40 (-0.47)
voting 96.49 94.87

Table 6: Comparison results of variants of TransMIL atten-
tion.

2.4. Discussion on Hyperparameter

Here, we provide a systematic discussion of an impor-
tant hyperparameter α in our framework. It balances the
impact of self-supervised and fully supervised information
during model training. Figure 8 demonstrates that α affects
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Figure 8: The performances of MHIM-MIL under different
loss scaling factors α.

the training of both models consistently, with values that
are either too high or too low resulting in biased training.
Particularly, when α is too high, it impairs the positive ef-
fect of slide labels on model learning. This effect is more
pronounced on the CAMELYON-16 dataset, as the model
frequently misclassifies some challenging slides, requiring
supervision from slide labels.

3. Data Pre-processing

Following prior works [7–9], we crop each WSI into a
series of non-overlapping patches of size 256× 256 at 20X
magnification and discard the background region, including
holes, as in CLAM [7]. After pre-processing, we obtain
a total of 3.6M patches from the CAMELYON-16 dataset,
with an average of about 9000 patches per bag, and 10.8M
patches from the TCGA Lung Cancer dataset, with an aver-
age of about 10300 patches per bag.

4. Implementation Details

Following [7–9], we use the ResNet-50 model [4] pre-
trained with ImageNet [2] as the backbone network to ex-
tract an initial feature vector from each patch, which has a
dimension of 1024. The last convolutional module of the
ResNet-50 is removed, and a global average pooling is ap-
plied to the final feature maps to generate the initial feature
vector. The initial feature vector is then reduced to a 512-
dimensional feature vector by one fully-connected layer.
The momentum rate of EMA is 0.9999 and the tempera-
ture of consistency loss is 0.1. An Adam optimizer [6] with
learning rate of 2 × 10−4 and weight decay of 1 × 10−5 is
used for the model training. The Cosine strategy is adopted
to adjust the learning rate. All the models are trained for
200 epochs with an early-stopping strategy. The patience
of CAMELYON-16 and TCGA Lung Cancer are 30 and 20,
respectively. We do not use any trick to improve the model
performance, such as gradient cropping or gradient accu-
mulation. The batch size is set to 1. All the experiments
were conducted with an NVIDIA RTX3090 GPU.

5. Pseudocode
We present the PyTorch-style pseudocode for the train-

ing scheme of MHIM-MIL in Algorithm 1.

6. Limitation
In this paper, we propose a Masked Hard Instance Min-

ing MIL framework to indirectly mine hard instances in the
absence of instance supervision information. Although this
strategy can effectively alleviate the over-reliance problem
of traditional MIL models on salient instances, it is also
challenging to accurately assess the difficulty level of in-
stances and mine the most helpful hard instances for train-
ing. Compared with traditional hard sample mining strate-
gies based on supervision information, this sub-optimal and
rough strategy affects the convergence speed and discrim-
inability of the model. In future work, we will focus on
how to accurately evaluate instance difficulty level in the
absence of complete supervision and use the most benefi-
cial instances to facilitate model training.

7. Code and Data Availability
The source code of our project will be uploaded

at https://github.com/DearCaat/MHIM-MIL.
CAMELYON-16 dataset can be found

at https://camelyon16.grand-challenge.org.
TCGA Lung Cancer dataset can be found

at https://portal.gdc.cancer.gov.
The script of slide pre-processing and patching can be

found at https://github.com/mahmoodlab/CLAM.
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Algorithm 1: PyTorch-style pseudocode for MHIM-MIL training scheme
# f t, f s: teacher and student networks
# f p: the pretrained network
# mrh: high attention mask ratio
# mrl: low attention mask ratio
# mrr: random attention mask ratio
# m: momentum rates
# tp: temperatures
# a: consistency loss scaling factor

# initialize
f t.params = f p.params
f s.proj head.params = f p.proj head.params

# teacher network not introduces any parameter
f t = f t.eval()

def mask fn(attn,mask ratio,largest):
# sort attention score and get the topk index
attn = sort(attn)
topk ids = topk(attn,k=int(mask ratio*attn.length),largest=largest)
# init vote matrix
vote = 0
# voting and counting
vote[topk ids] = 1
vote = sum(vote)
# get mask index
mask ids = topk(vote,k=int(mask ratio*attn.length))

return mask ids

for x,y in loader: # load a minibatch x,y with N slides
# get attention scores from teacher
,bag feats t,attn t = f t.forward(x)

# stop gradient of teacher network
bag feats t = bag feats t.detach()

# get masked instance index
# High Attention Masking
mask h = mask fn(attn t,mrh,True)
# Low Attention Masking
mask l = mask fn(attn t,mrl,False)
# Random Attention Masking
mask r = random select(attn t,mrr)
# Combine all index
mask all = mask h & mask l & mask r

# masked hard instance mining
x hard = masking(x,mask all)

logits s,bag feats s, = f s.forward(x hard)

# consistency loss
loss con = -softmax(bag feats t / tp) * log softmax(bag feats s)
# label prediction loss
loss cls = CrossEntropy(logits s,y)
loss all = loss cls + a*loss con

# Adam update: student network
loss all.backward()
update(f s.params)

# EMA update: teacher network
f t.params = m*f t.params+(1-m)*f s.params

# high attention mask ratio decay
CosineDecay(mrh)
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Figure 9: More comparisons of patch visualization between AB-MIL (baseline) and MHIM-MIL. Best viewed in color.
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