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In this supplementary material, we provide more de-
tails to complement the manuscript, including implemen-
tation details in Sec. 1 and additional experimental results
in Sec. 2.

1. Implementation details

This section presents more implementation details of the
Proposed ProtoTransfer approach.

1.1. Model architecture

For fair comparison with the distillation-based method
2DPASS [10], we use the same model architecture as it.
Two different encoder-decoder backbone are employed for
2D image and 3D point cloud.

For image, we apply ResNet-34 [4] as encoder to ex-
tract multi-scale image features. Then, we adpot a simple
FCN [6] decoder which upsamples these multi-scale fea-
tures to the resolution of 1/4 of the input size and con-
catenates them along the channel dimension. Finally, we
can obtain the semantic segmentation of the input image by
passing the concatenated feature map through a linear clas-
sifier.

For point cloud, we use the hierarchical encoder named
SPVCNN [8] as in [10] to get the multi-scale point features.
Note that each SPVCNN [8] encoder layer generates fea-
tures for all LiDAR points. Hence, we simply concatenate
these multi-scale point features in the decoder. Another lin-
ear classifier is utilized to get the semantic segmentation of
the input LiDAR points.

1.2. Point-to-pixel mapping mechanism

We use the same point-to-pixel mapping mechanism as
in PMF [42] and 2DPASS [35]. Formally, given a point
cloud P = {pi}Ni=1, we can project each point pi :=
{xi, yi, zi} to the corresponding pixel coordinate in the im-
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age plane as

[ui, vi, 1]
T =

1

zi
×K × T × [xi, yi, zi, 1]

T ,

where K ∈ R3×4 and T ∈ R4×4 are the camera in-
trinsic and extrinsic matrices respectively, which are sen-
sor configurations provided by the dataset. Then, we ob-
tain the point-to-pixel one-to-one correspondence mapping
Mp2p = {(⌊ui⌋, ⌊vi⌋)}Ni=1 where ⌊·⌋ is the round down
operation. Since only part of the coordinates are located
within the image plane, we construct a mask M3d ∈
[0, 1]N , where the above coordinates located within the im-
age plane are assigned to 1 and the remaining ones are as-
signed to 0. Next, we obtain the coordinates of matched
pixels by M2d = Mp2p[M3d] and further get the matched
pixel features F 2d m = F 2d[M2d] and point features
F 3d m = F 3d[M3d] through the tensor indexing operation.
F 3d m and F 2d m extracted using M3d and M2d are natu-
rally paired and ordered since Mp2p ensures the correspon-
dence between points and pixels. Thus, F 3d m and F 2d m

are in the same shape and can be concatenated as in Eq. (1).

1.3. Training and inference

During training, point clouds and images are differently
pre-processed. Specifically, for the image modal, images
are firstly randomly cropped and resized to 480 × 320 as
done in 2DPASS [10]. Then, color jittering and horizontal
flipping are also used to augment the input images. For the
point cloud modal, the whole cloud frame is utilized, and
several augmentations operations are included, i.e., random
point dropout, global rotation and translation, global scal-
ing, and flipping. For the optimizer, the learning rate is set
as 0.24 and a cosine function learning strategy is utilized to
gradually decay the learning rate. The batch size is set to 8.
The model is trained for 64 epochs on SemanticKITTI and
80 epochs on nuScenes.

During inference, the network only takes the point
clouds as input while the image segmentation branch and
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Figure A. Distance-based evaluation on nuScenes Lidarseg valida-
tion set.

Method mIoU
baseline 76.2

2DPASS [10] 79.4
ProtoTransfer (Proto. head) 79.6
ProtoTransfer (learned head) 80.5

Table A. Abaltion study of segmentation head on nuScenes Li-
darseg validation set.

the multi-modal fusion branch are dropped. Moreover, test-
time augmentation is used for performance boosting. Both
training and inference are conducted with 8 NVIDIA Tesla
V100 GPUs.

2. Additional Experiments
2.1. Distance-based evaluation

In this part, we study how segmentation is affected by
distance of the points to the ego-vehicle on nuScenes vali-
dation set. As illustrated in Fig. A, the results of all meth-
ods get worse by increasing the distance as point clouds
become sparser. However, as can be observed, our Proto-
Transfer improves the performance in 20-50m significantly,
effectively alleviating this trend. We attribute this perfor-
mance gain to the fully exploited and transferred multi-
modal knowledge.

2.2. Generality

To evaluate the generality of our ProtoTransfer, we apply
it to MinkowskiNet [8]. MinkowskiNet achieves a mIoU
gain of +2.6% (from 76.0% to 78.6%) on the nuScenes val-
idation set, affirming the generality of our ProtoTransfer.

2.3. Use prototype bank as a segmentation head

Although the prototype bank in our method is used as a
bridge for multi-modal knowledge transfer, it can also be
served as a non-learnable segmentation head as proposed
in [12]. Therefore, we further use the class-wise prototype

bank in our model as a segmentation head by assigning each
LiDAR point to its closest prototype. The segmentation
results are given in Tab. A. The ProtoTransfer using pro-
totype bank as segmentation head achieves 79.6% mIoU,
which surpasses our baseline and the former stat-of-the-art
2DPASS [10], showing a solid discriminative ability of the
prototype bank.

2.4. Results on nuScenes

Tab. B presents the results of our ProtoTransfer and pre-
viously published methods on the nuScenes Lidarseg vali-
dation set. We can find that our ProtoTransfer outperforms
2DPASS, the former state-of-the-art, by 1.1% in terms of
mIoU. Besides, ProtoTransfer achieves the best or compa-
rable performance on classes of small sizes, such as bicycle,
motorcycle and pedestrian, showing the superiority of our
methods in multi-modal fusion and knowledge transfer.

The screenshot of the test results on the online leader-
board of nuScenes Lidarseg Challenge is shown in Fig. B,
where our ProtoTransfer ranks 2nd.
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(AF)2-S3Net [1] L 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [7] L 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [11] L 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [2] L 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
AMVNet [5] L 76.1 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9

Cylinder3D [13] L 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet [9] L 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9
PMF [14] L+C 76.9 74.1 46.6 89.8 92.1 57.0 77.7 80.9 70.9 64.6 82.9 95.5 73.3 73.6 74.8 89.4 87.7

2D3DNet [3] L+C 79.0 78.3 55.1 95.4 87.7 59.4 79.3 80.7 70.2 68.2 86.6 96.1 74.9 75.7 75.1 91.4 89.9
2DPASS [10] L 79.4 78.8 49.6 95.6 93.6 60.0 84.1 82.2 67.5 72.6 88.1 96.8 72.8 76.2 76.5 89.4 87.2
Baseline [10] L 76.2 75.3 43.5 95.3 91.2 54.5 78.9 72.8 62.1 70.0 83.2 96.3 73.2 74.2 74.9 88.1 85.9

ProtoTransfer [ours] L 80.5 78.4 54.0 95.5 93.0 60.7 89.0 83.4 69.8 76.7 88.3 96.8 74.6 76.0 75.6 89.4 87.0
Table B. Results of our proposed method and published state-of-the-art LiDAR Segmentation methods on nuScenes Lidarseg validation
set, where L and C respectively denote LiDAR and camera. The bold numbers indicate the best results.

Figure B. Screen shot of nuScenes Lidarseg Challenge leaderboard on online server (2023-02-14). The 2nd palce “PTransfer (Ptrans)” is
ours.
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