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In the supplementary material, we first implement our at-
tack method on more victim models for attack performance
comparison, then we provide corresponding defense com-
parison to validate the robustness of our attack. After that,
we provide more visualization results on the adversarial ex-
amples generated by different 3D attackers on different vic-
tim models. Finally, we provide more details of our pro-
posed spectrum iterative walking strategy.

1. Attack Performance on More Victim Models
To investigate the effectiveness and generalization-

ability of our attack, we perform our 3DHackker on more
victim models, i.e., PAConv [6], SimpleView [1], and Cur-
veNet [5]. For comparison, we select the SOTA attack
method SI-Adv [2] in both white- and black-box settings.
Note that, our 3DHacker is the first 3D adversarial attack
in more challenging hard-label black-box setting, which is
much harder to achieve success since it has no informa-
tion of model details (white-box) and output logits (black-
box). As shown in Table 1, our 3DHacker achieves smaller
perturbation sizes than the black-box SI-Advb model and
achieves very competitive results with the white-box SI-
Advw model. Overall, our 3DHacker achieves the lowest
perturbation Dh in all three victim models, demonstrating
the effectiveness of our 3DHacker.

2. Defense on More Victim Models
To evaluate the robustness of our 3DHacker compared

to SI-Advb [2], we also conduct the defense methods Sta-
tistical Outlier Removal (SOR) [10] and Simple Random
Sampling (SRS) [7]) on corresponding adversarial exam-
ples generated on PAConv [6], SimpleView [1], and Cur-
veNet [5]. As shown in Table 2, (1) As for the defense
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method SOR, our 3DHacker can achieve a higher attack
success rate than SI-Advb on all three victim models. (2)
As for the SRS defense, our 3DHacker still achieves a better
attack performance than SI-Advb as we generate the adver-
sarial sample with high similarity to the original one in both
geometric topology and local point distributions. (3) Our
adversarial samples achieve the lowest perturbations with a
much higher attack success rate when attacking the model
protected by defenses. Overall, compared to the previous
best attack method SI-Adv, our 3DHacker is much more ro-
bust to existing defense strategies.

3. More Qualitative Results

To further demonstrate the effectiveness of our method
on other point clouds of different object categories, we ex-
pand the visualization experiment that provides visualiza-
tion on adversarial samples generated by our 3DHacker, SI-
Advw[4] (white box attack) and SI-Advb[2] (black box at-
tack) as shown in Figure 1, Figure 2 and Figure 3. It shows
that previous white- and black-box attackers easily lead to
outlier problems and uneven distributions. Moreover, they
require more knowledge of the model details (parameters or
output logits) during the generation process of adversarial
samples. Compared to them, our hard-label setting only ac-
cesses the output label of the model and is harder to achieve
successful attack. Even though, as shown in the figures,
our 3DHackker can alleviate the outlier point problems and
produce more imperceptible adversarial samples.

4. More Details of Spectrum Walking

As mentioned in Section 3.4 of the main paper, in
addition to the general coordinate walking, we design a
spectrum-wise walking strategy in the boundary-cloud opti-
mization stage to jump out the local optimum for producing
a better optimized adversarial point cloud. Here, we first
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Table 1. Comparative results on the perturbation sizes of different methods for adversarial point clouds. Our setting is harder to attack.

Setting Attack Model Details PAConv [6] SimpleView [1] CurveNet [5]
Para. Logits Dh Dc Dnorm Dh Dc Dnorm Dh Dc Dnorm

White-Box SI-Advw [2] ✓ ✓ 0.0097 0.0004 0.6920 0.0256 0.0014 2.1522 0.0199 0.0006 0.9803
Black-Box SI-Advb [2] × ✓ 0.0449 0.0004 1.3386 0.0469 0.0010 1.8754 0.0453 0.0004 1.4336
Hard-Label Ours × × 0.0046 0.0014 0.9444 0.0136 0.0029 1.6150 0.0125 0.0022 1.2332Black-Box

Table 2. Resistance of the black-box attacks on defended point cloud models.

Defense Attack PAConv [6] SimpleView [1] CurveNet [5]
ASR(%) Dh Dnorm ASR(%) Dh Dnorm ASR(%) Dh Dnorm

SOR [10] SI-Advb [2] 94.4 0.0359 1.9640 95.2 0.0375 3.1333 88.8 0.0351 2.5402
Ours 95.5 0.0028 0.6744 93.6 0.0083 1.0873 89.2 0.0095 1.1752

Drop(30%) SI-Advb [2] 73.6 0.0402 1.1979 56.8 0.0411 1.2577 71.2 0.0400 1.4630
Ours 95.2 0.0061 0.8290 91.2 0.0092 0.9638 82.5 0.0157 0.8598

Drop(50%) SI-Advb [2] 84.8 0.0390 0.8537 68.8 0.0368 0.9119 79.2 0.0392 1.1759
Ours 93.8 0.0136 0.7261 97.6 0.0066 0.7570 83.4 0.0186 0.7558
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Figure 1. Visualization results of adversarial samples generated by different attack methods on PAConv model.

provide more details of this local optimum problem, and
then explain why our spectrum walking strategy work.

Details of local optimum. By only utilizing the coordi-
nate walking to move the boundary cloud along the deci-
sion boundary, the optimization process may stop earlier
and stuck into a local concave of the decision boundary.
For example, if we design an optimization process with 200
iterations for each boundary cloud, some optimized point
clouds may keep constant at the beginning. This is because
the adversarial point cloud has a chance to fall into a ‘trap’
due to the concave-convex of the decision boundary, where

a further small walking step in arbitrary direction is likely
to change the classification result of the victim model to
the ground-truth label of benign cloud, thus it is hard to
estimate a gradient direction of coordinate walking while
keeping adversarial in the next iteration. We call this phe-
nomenon as the local optimum problem, and the boundary
cloud falling into the ‘trap’ may possess low quality. To this
end, in addition to the data domain, we need to explore ad-
ditional knowledge in other latent spaces to adjust the point
cloud geometry without losing its antagonism.

Why spectrum walking work? To overcome such local
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Figure 2. Visualization results of adversarial samples generated by different attack methods on SimpleView model.
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Figure 3. Visualization results of adversarial samples generated by different attack methods on DGCNN model.

optimum, the adversarial point cloud needs to walk a long
step when falling into a ‘trap’. A general intuition is to in-
crease the coordinate walking size, however, directly uti-
lizing a large coordinate walking step will produce out-
liers that are hard to be eliminated in the following itera-
tions, since the outliers contribute more to the adversarial

performance than ordinary points. Therefore, we design a
spectrum walking strategy in the spectral domain instead of
the simple data domain, which not only can preserve high-
quality geometric shape of the point cloud, but also has the
potential to keep its latent adversarial characteristics dur-
ing the spectrum walking optimization. Moreover, unlike
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Figure 4. Visualization on the different combinations of coordinate and spectrum walking strategies for optimizing adversarial point cloud.

the coordinate-wise strategy that adds point-wise offsets for
walking, walking in the spectral domain is to search triv-
ial offsets of the spectrum frequency and will not lead to
the data-domain problems of changing classification results
and destroying the shape. Therefore, spectrum walking is
effective enough to help to jump out of the local optimum
and avoid the outlier problems. However, only utilizing the
spectrum walking is not decision-boundary awareness, vali-
dated in Table 4 of the main paper. Overall, by jointly utiliz-
ing coordinate and spectrum walking strategies, we can take
advantage of both of them, and optimize the best adversar-
ial point cloud along the decision boundary. Figure 4 also
illustrates the effectiveness of the joint coordinate-spectrum
walking strategy.

5. Other experimental results
Running time. We conduct running time experiments to
evaluate the attack efficiency of our 3DHacker. As shown
in Table 3, our running time is competitive to the black-
box model since our optimization steps can be efficiently
achieved. The white-box model is most time-consuming
since it needs complicated backpropagation through the vic-
tim model.

Method PointNet DGCNN CurveNet PAConv
SI-ADVw 1.32s 3.87s 21.53s 2.18s
SI-ADVb 0.58s 1.25s 8.77s 0.31s

Ours 1.16s 2.18s 10.60s 1.09s
Table 3. Average time for each adversarial point cloud generation.

Comparison on hard-label settings. Since existing 3D at-
tacks rely on either model parameters or output logits, they
can not be adapted to hard-label setting. Therefore, we re-
implement two 2D hard-label settings into 3D domain for
comparison. In Table 4, our method performs much better.
Experiments on ShapeNetPart dataset for other victim
models. We conduct additional experiments on novel vic-
tim point cloud classification models [9, 8] and achieve re-

Method
PointNet DGCNN

Dh Dc Dnorm Dh Dc Dnorm

Chen et al. 2020 0.1284 0.0695 1.1784 0.1291 0.0493 0.9827
Li et al. 2021 0.0814 0.0445 1.0863 0.0892 0.0505 1.1338

Ours 0.0136 0.0017 0.8561 0.0129 0.0026 0.9030
Table 4. Comparison on the same hard-label setting.

Method
PointTransformer [B] Point-BERT [C]
Dh Dc Dnorm Dh Dc Dnorm

SI-ADVw 0.0325 0.0021 1.2536 0.0161 0.0012 1.5381
SI-ADVb 0.0453 0.0038 1.5702 0.0511 0.0015 1.9875

Ours 0.0273 0.0028 1.0126 0.0157 0.0031 1.2848
Table 5. Comparison on the ShapeNetPart dataset.

Method
PointTransformer [B] Point-BERT [C]
Dh Dc Dnorm Dh Dc Dnorm

SI-ADVw 0.0491 0.0052 1.0151 0.0385 0.0028 1.2403
SI-ADVb 0.0543 0.0039 0.8312 0.0672 0.0027 1.4317

Ours 0.0243 0.0035 0.8635 0.0294 0.0047 1.2618
Table 6. Comparison on the ScanObjectNN dataset.

Model Method ASR (%) Dh Dc Dnorm

Pointnet
SI-ADVb 82.1 0.0458 0.0012 2.7804

ours 84.5 0.0146 0.0018 1.3519

DGCNN
SI-ADVb 65.3 0.0421 0.0016 1.5804

ours 71.8 0.0213 0.0031 1.4652
Table 7. Experiment of more defense on Modelnet40.

markable performance similar to the results performed in
main body. Our 3DHacker produces a higher Chamfer dis-
tance Dc because we modify all the points leading to a large
sum of displacements. However, it performs better in Dh

since we conduct relatively average perturbations to point
cloud which does not count on a few outliers to confuse the
victim models, leading to imperceptible and having the po-
tential to bypass the outlier detection defense.
Experiment of defense method. We conduct an experi-
ment on a novel defense method: Lattice Point Classifier
(LPC) [3]. Our 3DHacker achieves a better attack than SI-
Advb [2] as we generate the adversarial sample with high
similarity to the original one in both geometric topology and
local point distributions.
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