
A. Proofs
A.1. Proof of Proposition 1

Proof. The student’s update rule parameterized by α is
given by:

w(t+1)(α) = w(t) − ηw∇wL̃(w,α)
∣∣∣∣
w=w(t)

(13)

Differentiating eq. (13) w.r.t α yields:

dw(t+1)

dα

∣∣∣∣
α=α(t)

= −ηw∇wαL̃(w,α)
∣∣∣∣
(w(t),α(t))

(14)

We now can compute the meta-gradient explicitly using
the chain rule as follows:

dL
dα

∣∣∣∣
α=α(t)

=
dL

dw(t+1)

∣∣∣∣
w(t+1)=w(t+1)

· dw
(t+1)

dα

∣∣∣∣
α=α(t)

(15)

Where w(t+1) is obtained from the updated student.
Substituting eq. (14) we obtain the desired result.

A.2. Proof of Proposition 2

Proof. In the case k > 1, we have:

w(t−k+2)(α) = w(t−k+1) − ηw∇wL̃(w(t−k+1), α) (16)

Recall that we neglect the dependency of w(t−k+1) on α. In
addition, for all t− k + 2 ≤ τ ≤ t:

w(τ+1)(α) = w(τ)(α)− ηw∇wL̃(w(τ)(α), α) (17)

Recall also that:

∀t− k + 1 ≤ τ ≤ t : α(τ) = α(t) (18)

We denote:

H(τ)
wα := ∇wαL̃(w(τ), α(τ)) (19)

H(τ)
ww := ∇wwL̃(w(τ), α(τ)) (20)

deriving eq. (17) w.r.t α (considering the derivative at
α = α(t)), using the chain rule again and substituting
eq. (18) yields:

dw(τ+1)

dα
=

dw(τ)

dα
− ηw[H

(τ)
ww ·

dw(τ)

dα
+H(τ)

wα] (21)

We rewrite the above equation as:

dw(τ+1)

dα
= [I − ηwH

(τ)
ww] ·

dw(τ)

dα
− ηwH

(t)
wα (22)

If we now approximate H
(τ)
ww ≈ I we get:

dw(τ+1)

dα
= (1− ηw)

dw(τ)

dα
− ηwH

(τ)
wα (23)

By setting γw = 1 − ηw, opening up the recursion for-
mula and using eq. (16) at the end of the recursion, we get
the desired result.

A.3. Proof of Proposition 3

Proof. This follows from the definition of cross-entropy
and simple differentiation rules. Indeed,

ℓ̃i(w,α) = CE(qα(y|xi, ỹi), pw(y|xi)) = (24)

−
C∑

c=1

(qα(y = c|xi, ỹi) · log(pw(y = c|xi)))) = (25)

− ⟨qα(y|xi, ỹi), log pw(y|xi))⟩ (26)

Now, for two general differential functions f(w) : RW →
RC , and g(α) : RA → RC consider h(w,α) =
⟨f(w), g(α)⟩. Then:

∇wh(w,α) = ∇w ⟨f(w), g(α)⟩ = (g(α))TJw(f) (27)

Differentiating both sides of the equation w.r.t α yields:

∇wαh(w,α) =
d∇wh

dg
· dg
dα

= [Jw(f)]
T [Jα(g)] (28)

And hence ∇wαh(w,α) exists and equals to
[Jw(f)]

T [Jα(g)]. Substituting f, g from eq. (26) in
the above equation yields the desired result.

B. Comparison of the Meta Gradient Compu-
tation

We compare the differences of our FPMG algorithm and
MLC [41] in terms of the quality and efficiency of the
meta-gradient computation in table 3. Prominently, FPMG
avoids computing second order derivatives which yield a
large memory and computation overhead.

C. Additional Experiments
C.1. Ablation studies

We perform an ablation study on the different compo-
nents of our method. Each setting is validated on the Cloth-
ing1M dataset. The results are summarized in table 4.

Criterion FPMG MLC

Exact GD recursion ✓ ✗

Exact mixed Hessian Hwα ✓ ✓

Avoids second-order derivative ✓ ✗

Approximation of Hww Hww ≈ I Hww ≈ I

Table 3: Comparison of FPMG and MLC [41] regarding the
meta-gradient quality and efficiency of the computation.

Meta
Regularization

Corruption
Strategy

Strong
Augmentations Accuracy

✗ ✗ ✗ 74.35
✓ ✗ ✗ 77.52
✓ Rand. ✗ 78.51
✓ Adv. ✗ 78.60
✓ Adv. ✓ 79.35

Table 4: Ablation study on the distinct components of
EMLC. We validate the effectiveness of each combina-
tion by considering test accuracy (%) on the Clothing1M
dataset. We verify the effectiveness of the meta-learning
regularization, the effectiveness of the proposed proactive
noise injection and the benefit of applying AutoAugment to
the labeled data. The corruption strategy values might be
either none (✗– in which case, the BCE loss is omitted),
random (rand.) or adversarial (adv.).

As can be observed from table 4, our approach possesses
a very strong baseline. Each of our proposed components
incrementally improves the effectiveness, as expected. No-
tably, it can be observed that the meta-regularization and
the artificial corruption were crucial for the success of our
method.

Regarding the number of look-ahead steps, we perform
two ablative experiments. Following the finding that the
multi-step strategy outclassed the single-step strategy in
some of the CIFAR experiments, we perform an ablation
study on the number of steps in the multi-step strategy on
the CIFAR-100 dataset with 50% symmetric noise and a
fixed seed. As can be observed from the results in fig. 6,
k = 5 arbitrated to be the best. In addition, due to the
importance of the Clothing1M dataset, we perform an ad-
ditional ablation study to demonstrate the robustness of our
method to varying number of look-ahead steps on a real-
world dataset, as presented in fig. 7.

C.2. Teacher’s Label Recovery

To further verify the teacher’s ability to cleanse the train-
ing labels, we compare the teacher’s label recovery rate

One-Step k=3 k=5 k=7
Number of meta gradient look-ahead steps

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

Ac
cu

ra
cy

Figure 6: Ablation study on the number of look-ahead steps,
measuring the effectiveness on the CIFAR-100 dataset with
50% symmetric noise.

One-Step k=3 k=5 k=7 k=9
Number of meta gradient look-ahead steps

77.0

77.5

78.0

78.5

79.0

79.5

Ac
cu

ra
cy

Figure 7: Ablation study on the number of look-ahead steps,
measuring the effectiveness on the Clothing1M dataset.

(total and wrongly annotated samples) on the CIFAR-10
dataset with different noise levels of EMLC against MLC
[41] and MLC with self-supervised pretraining in fig. 8.

D. A probabilistic interpretation of the teacher

The goal of the teacher is to model the conditional dis-
tribution of the true label y given the sample x and its noisy
label ỹ, namely p(y|x, ỹ).

The above conditional distribution can be decomposed
as follows:

MLC MLC+SSL EMLC(k=1) EMLC(k=5)
Method

0

20

40

60

80

Ac
cu

ra
cy

20% Total Noise
20% Wrong Noise

50% Total Noise
50% Wrong Noise

80% Total Noise
80% Wrong Noise

90% Total Noise
90% Wrong Noise

Figure 8: Comparison of the teacher’s label recovery rate
(total and wrongly annotated samples) on the CIFAR-10
dataset with different noise levels.

p(y|x, ỹ) = (29)
w · p(y|x, ỹ,A) + (1− w) · p(y|x, ỹ,Ac) = (30)
w · δỹy + (1− w) · p(y|x, ỹ,Ac) (31)

where A is the event of y = ỹ and w := p(A|x, ỹ).
In our teacher architecture, we model w directly. How-

ever, we approximate p(y|x, ỹ,Ac) ≈ p(y|x,Ac) ≈ p(y|x)
and model p(y|x) instead. In the first approximation, we
throw away the conditioning on ỹ, intuitively ignoring the
cases in which y|x is dependent of ỹ whenever the label is
corrupted. While the second approximation is technically
unnecessary (as p(y|x,Ac) can be easily modeled by mask-
ing the SoftMax layer), we found out that the latter model-
ing was better in practice since it effectively enhances the
weight of hard clean samples.

E. Further Details of the Experimental Setting
E.1. Symmetric and Asymmetric Artificial Noise

In the Symmetric noise setting, a fraction of ϵ samples are
chosen randomly. The samples are then assigned with a ran-
dom label selected uniformly over the classes. The expected
fraction of wrong samples is effectively smaller than ϵ. This
noise definition is convenient, as ϵ = 1 would mean that
the label assignment is entirely random. In the Asymmetric
noise setting proposed by Partini et al. [23], a fraction of ϵ
samples are chosen randomly. Then, their label is replaced
by a label of a visually similar category, to better model
real-world noise. In the CIFAR-10 dataset, this is done by
applying the following transitions: TRUCK→ AUTOMO-
BILE, BIRD → AIRPLANE, DEER → HORSE, CAT ↔
DOG. In the CIFAR-100 dataset, each label is changed to
its successor(circularly) in its super-class.

E.2. Implementation Details and Hyperparameters

Further experimental details are presented in table 5.

Dataset CIFAR-10 CIFAR-100 Clothing1M

Architecture ResNet-34 ResNet-50 ResNet-50
Pretraining SimCLR SimCLR ImageNet
MLP hidden layers 1 1 1
MLP hidden units 128 128 128
Noisy batch size 128 128 1024
Clean batch size 32 32 1024
Epochs 15 15 3

Noisy augmentations Horizontal Flip
Random Crop

Horizontal Flip
Random Crop None

Clean augmentations
Horizontal Flip
Random Crop

CIFAR AutoAugment

Horizontal Flip
Random Crop

CIFAR AutoAugment

Horizontal Flip
ImageNet AutoAugment

Optimizer SGD SGD SGD
Scheduler None None LR-step
Momentum 0.9 0.9 0.9
Weight decay 0 0 0
Initial LR 0.02 0.02 0.1
Number of GPUs 1 1 8

Table 5: Experimental setup and hyper-parameters.

