
StageInteractor: Query-based Object Detector with Cross-stage Interaction

Yao Teng1 Haisong Liu1 Sheng Guo3 Limin Wang1,2,�

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Shanghai AI Lab, China 3MYbank, Ant Group, China

A. Spatial Mixing
The process of applying filter reusing onto the spatial

mixing is depicted in Fig. 1. It is very similar to the filter
reusing on channel mixing, but the reused filter is used in
the combination with the generated filter rather than cascade
mixing. This combination is performed along the output
dimension.

In the cascade mixing, the lightweight static linear layers
are placed between the activation function and the dynamic
mixing. Apart from the static channel mixing, the linear lay-
ers can also achieve the efficient spatial mixing, as shown
in Code 1. Specifically, we split the sampling points into
K groups, and perform affine transformation within and
across groups, like [1]. The parameters cost on this oper-

ation is (K2+(
P

(i)
in

K)2) ·D2
C . Since the number of sampling

points is set as the power of 2 and the number of spatial
blocks K is set close to the square root of the number of

sampling points, we use the formula K = 2⌊log2

√
P

(i)
in ⌋ for

calculation. Thus, an upper-bound of the parameter cost is
O(3P

(i)
in D2

C), and thus this module is still more lightweight
than those related to dynamic filter generation.

K: spatial group size, P: the number of sampling points
G: channel group size, Dc: channel dimension per group
N: the number of queries
I: the sampled feaures with shape (N∗G, K, P//K, Dc)

I 1 = I.reshape(N∗G∗K, P//K∗Dc)
I 2 = I.permute(0, 2, 1, 3).reshape(N∗G∗P//K, K∗Dc)
I 1 = Linear(I 1).reshape(N∗G, K, P//K, Dc)
I 2 = Linear(I 2).reshape(N∗G, P//K, K, Dc)
I = I + I 1 + I 2.permute(0, 2, 1, 3)
I = ChannelMixing(I)

Code 1: PyTorch-like Pseudocode for the static mixing.

B. Feature Sampling
For the feature sampling, according to [4, 8, 2], we first

generate a set of sampling points via content vectors, and
then use these points to capture the desired image features

�: Corresponding author (lmwang@nju.edu.cn).

Mixing

Filter Adapter

LN & ReLU

: Original Mixing
: Filter Reusing

Mixed
features

channels

po
in

ts

Storing

Previous Filters

Mixing

Linear
Dynamic
Filter

Filter
Bank

Content
Vector

Mixed
features

Concat

Figure 1: The overview of our spatial dynamic mixing.

with bilinear interpolation. Since the sampling points are
organized into K groups, the feature sampler is correspond-
ingly designed to generate points in groups. The PyTorch-
like Pseudo-code is illustrated in Code 2. Specifically, we
first use the content vectors to generate two sets of offsets
to the positional vectors by linear layers. Then, the offsets
is formed into the sampling points to extract features.

K: spatial group size, P: the number of sampling points
G: channel group size, N: the number of queries
v: the content vector, b: the positional vector
F(): the bilinear interpolation on multi−scale image features
Im: the multi−scale image feaures, I: the sampled feaures

xy = b[..., 0:2], z = b[..., 2:3], r = b[..., 3:4]

p 1 = Linear(v).reshape(N∗G, K, 1, 3)
p 2 = Linear(v).reshape(N∗G, 1, P//K, 3)

dxy 1 = p 1[..., 0:2], dz 1 = p 1[..., 2:3]
dxy 2 = p 2[..., 0:2], dz 2 = p 2[..., 2:3]

p xy = xy + 2∗∗(z − 0.5∗r) ∗ (dxy 1 + 2∗∗dz 1 ∗ dxy 2)
p z = z + dz 1 + dz 2
I = F(Im, p xy, p z)

Code 2: PyTorch-like Pseudocode of the sampler.

C. Additional Ablation Studies
The modules in the cascade mixing. Both the reused

heavy dynamic filters and the lightweight static linear lay-
ers are crucial to our method. As shown in Tab. 1, only
when these two mixing approaches are combined can the
large performance gain be achieved. Moreover, as shown

Dynamic Static AP AP50 AP75 APs APm APl

44.1 62.3 47.6 25.5 47.5 60.3
✓ 43.5 61.7 46.8 25.3 47.0 59.0

✓ 43.9 62.2 47.6 26.6 46.9 60.8
✓ ✓ 44.8 63.0 48.4 27.5 48.0 61.3

Table 1: The modules in the cascade mixing.

Static Mixing AP AP50 AP75 APs APm APl

43.9 62.2 47.6 26.6 46.9 60.8
Channel 44.0 62.3 47.8 26.2 47.0 61.1
Spatial 43.7 61.8 47.2 25.7 47.0 59.9

Channel-spatial 44.8 63.0 48.4 27.5 48.0 61.3

Table 2: The type of static mixing in our detector.

Sampling AP AP50 AP75 APs APm APl

Vanilla 43.7 62.1 47.2 25.6 47.4 59.7
Group init. 44.1 62.3 47.9 26.2 47.0 60.8

Ours 44.8 63.0 48.4 27.5 48.0 61.3

Table 3: The type of feature sampling. Vanilla denotes
the original feature sampling [4]. Group-init. means
the group-wise initialization on the original sampler.

in Tab. 2, we find that inserting static channel-spatial aggre-
gation into the lightweight linear layers is more beneficial
than solely performing channel or spatial mixing.

Feature sampling. Different from the feature sampling
in [4], the sampler in our detector is required to generate
points in groups. Therefore, in this part, we explore whether
the original feature sampling method (i.e. directly generat-
ing all sampling points) is feasible. As shown in Tab. 3, we
report the results of our detector with vanilla feature sam-
pling in the first line. Compared to the first line, the results
in the last line show that our sampling is more compatible
with our detector than 3D feature sampling. To find whether
the weight initialization of 3D feature sampler causes this
phenomenon, we modify the initialization of sampler so
that its outputs at the first iteration are identical with the
our sampler, and report the corresponding performance in
the second line. The results are still worse than our sam-
pling. Therefore, we speculate that our two-stage sampler
is consistent with our dynamic mixing, thereby boosting the
performance.

More sampling points in the first stage. As shown
in Tab. 4, we conduct ablation studies on adding more sam-
pling points of the first stage. The motivation is to use more
points to cover the whole image as much as possible, enlarg-
ing the receptive field. Both of our baseline and our method
can get slight benefits from more sampling points.

StageInter P
(1)
in AP AP50 AP75 APs APm APl

32 42.5 61.4 45.7 25.0 45.1 58.2
64 42.6 61.4 45.7 24.4 45.7 58.2

✓ 32 44.6 62.6 48.3 26.2 48.1 61.1
✓ 64 44.8 63.0 48.4 27.5 48.0 61.3

Table 4: The number of sampling points at the first stage.

NMS Threshold AP AP75

✓ 0.5 44.1 (-0.7) 47.1
✓ 0.75 44.8 (+0.0) 48.4
✓ 0.9 44.8 (+0.0) 48.5
- - 44.8 48.4

Table 5: The performance of our StageInteractor with or
without NMS.

Backbone AP AP50 AP75 APs APm APl

ResNet-50 49.0 67.4 53.7 30.2 51.7 62.3
ResNet-101 50.4 68.8 55.2 31.0 53.1 64.1

ResNeXt-101-DCN 51.3 70.1 56.0 32.1 53.9 65.2
Swin-S 52.7 71.8 57.7 33.3 55.1 67.1

Table 6: The performance of StageInteractor on COCO
test-dev set with 300 queries, 36 training epochs and
single model single scale testing.

D. Duplicate Removal
According to [6], the strict one-to-one label assignment

can ensure the object detector to have the ability to remove
duplicate predictions. However, our cross-stage label as-
signer actually does not strictly follow one-to-one matching
even in the last few stages, i.e., it has the potential to as-
sign one ground-truth object to multiple predicted boxes on
the classification task. Therefore, we explore whether our
label assigner influences the performance of duplicate re-
moval in query-based object detectors. As shown in Tab. 5,
the results show that the performance our detector is rela-
tively stable on AP with or without NMS. We consider this
is because the coordinates of the most predicted boxes in the
last few stages change little, and the operation of gathering-
and-selecting labels in our assigner is performed adaptively.

E. MS COCO Test
As shown in Tab. 6, we report the performance of

StageInteractor on COCO test-dev set. Here, the per-
formance is evaluated with the same models that are used
for the comparison with other state-of-the-art query-based
detectors. Because the labels of COCO test-dev set are
not publicly available, so the evaluation is performed on the
online server.

(a) Baseline + CSLA. (b) Baseline + Reusing. (c) StageInteractor.

Figure 2: t-SNE [7] visualization of features of each query on MS COCO dataset [5] learned by various model variants. Each
point denotes a feature vector, and colors denote different categories. CSLA: cross-stage label assignment.

F. Analysis about dynamic channel mixing

In vanilla AdaMixer [4], the FLOPs for the channel mix-
ing is B ×N ×G× P

(i)
in × (2DC − 1)×DC , whereas the

FLOPs for generating a dynamic channel filter is B ×N ×
G × (2D − 1) × DC × DC . Therefore, the ratio between
these two FLOPs is:

B ×N ×G× (2D − 1)×DC ×DC

B ×N ×G× P
(i)
in × (2DC − 1)×DC

≈ 8 (1)

Therefore, generating channel filters consumes more com-
putational costs than performing channel mixing.

G. Qualitative Analysis

To verify the discriminability of our detector, we use
t-SNE [7] visualization for the query features in various
models. As depicted in Fig. 2, we select some represen-
tative categories with corresponding features to show the
effectiveness of our structures. Compared with Fig. 2a
and Fig. 2b, the distance between each group of categories
is wider in Fig. 2c, and the points are more separate.

H. Limitation

Although our two cross-stage structures are effective,
their designs are simple. In the future, we hope the fol-
lowing topics could be explored in the future: (1) the op-
timal designs of each decoder layer in a query-based de-
tector; (2) more elaborate and effective cross-stage interac-
tions; (3) the theoretical properties and the essence of the
cascade structures.

I. Societal Impact

Object detection is a classical vision task and we adopt
the open dataset: MS COCO [5], so there is no negative
social impact if the method is used properly.

J. Model Implementation Details

Hyper-parameters. The cross-stage label assignment
is performed on each stage, and its application scope is
[i − 1, L]. The threshold for selecting labels is set to 0.5.
The reuse of dynamic filters do not perform on the first two
decoder layers, and in other stages, all the generated filters
for channel mixing are reused. The number of spatial blocks
K is set close to the square root of the number of sampling

points, i.e., we use the formula K = 2⌊log2

√
P

(i)
in ⌋ for cal-

culation. Other parameters of our model are in line with [4].
Other parameters of our model are in line with the vanilla
AdaMixer [4] and DETRs [3].

Initialization. Following [4], the initial weights of lin-
ear layers generating dynamic filters are set to zero, and
the biases of these linear layers are initialized as expected.
The initial weights of linear layers in the feature sampler
are also set to zero, and the biases of these linear layers are
initialized as follows: (1) the bias corresponding to dxy 1 in
Code 2 is uniformly initialized within [-0.5, 0.5]. (2) the one
corresponding to dxy 2 is uniformly initialized within [- 0.5√

2

, 0.5√
2

]. (3) The parts corresponding to the dz 1 and dz 2 are
initialized as zeros. The initialization of other modules are
set following [4, 3].

References
[1] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping

Luo. Cyclemlp: A mlp-like architecture for dense prediction.
arXiv preprint arXiv:2107.10224, 2021. 1

[2] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,
Han Hu, and Yichen Wei. Deformable convolutional net-
works. In Proceedings of the IEEE international conference
on computer vision, pages 764–773, 2017. 1

[3] detrex contributors. detrex: An research platform for
transformer-based object detection algorithms, 2022. 3

[4] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 5364–5373, 2022. 1, 2,
3

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 3

[6] Peize Sun, Yi Jiang, Enze Xie, Wenqi Shao, Zehuan Yuan,
Changhu Wang, and Ping Luo. What makes for end-to-end
object detection? In International Conference on Machine
Learning, pages 9934–9944. PMLR, 2021. 2

[7] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 3

[8] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

