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Supplementary Material
In the supplementary material we present the following:

• Section A discusses the use of the Essential matrix
over the Fundamental matrix in the pinhole errors.

• Section B shows a comparison with the optimal trian-
gulation method from Kukelova et al. [4] which uses
the one parameter division model from Fitzgibbon [2].

• Section C provides more qualitative examples compar-
ing the reprojection error with the other error metrics.

• Section D shows the detailed derivations for the
covariance-aware Tangent-Sampson error.

• Section E presents the additional details for the exper-
imental setups in the main paper.

• Table 1 shows the runtime comparison without intrin-
sic optimizations.

A. Essential Matrix and Pinhole Error Metrics
In the main paper we define the pinhole error metrics

(ESED, ES , EML) in terms of the Essential matrix E in-
stead of the Fundamental matrix F = K−⊺

2 EK−1
1 , where

K1 and K2 are the respective calibration matrices. If both
cameras have the same intrinsic parameters with zero-skew
and unit-aspect ratio (a common situation in practice), i.e.

K1 = K2 =

f 0 cx
0 f cy
0 0 1

 , (1)

then the two variants coincide up to a scaling factor (the
focal length f ), i.e. E2

S(x,F ) = f2E2
S(K

−1x,E), etc.
In the paper we decided to only focus on the E version

of the errors for ease of presentation. For all of our quantita-
tive experiments, the two cameras have the same K-matrix
and aspect ratio very close to one, so we would have gotten

similar results using F -variant. Thus we believe that all our
conclusions should hold for this case as well.

The use of the E-variant is also more natural for images
with complex distortions (e.g. fisheye or spherical images)
that first need to be undistorted to a pinhole image before
computing the error. This undistortion can of course map to
any image plane (i.e. any focal length), but using the nor-
malized image plane (K = I) is a natural choice.

B. Comparison with Kukelova et al.

In [4], Kukelova and Larsson presented a generalization
of the optimal triangulation method from Lindstrom [5] that
handles radial distortion. Specifically, they assume the that
the cameras are modeled with the one parameter division
model from Fitzgibbon [2]. The Tangent Sampson error
is applicable for this particular model as well, and here
we show a small comparison of the two approaches. We
take the GoPro7 images of checkerboards (together with
intrinsic calibration) from [4] and for all pairs compare
the Kendall-Tau correlation between the residuals (as in
the main paper). The dataset is split into two categories,
medium and wide, corresponding to the FoV-setting on the
GoPro camera. The results are shown in Figure 1. For
comparison we also include the pinhole triangulations from
Lindstrom [5]. The Tangent Sampson error is perfectly cor-
related with the optimal estimate from Kukelova et al. [4].
Note however that while the results are the same, evaluat-
ing the Tangent Sampson error is approximately 18x and 3x
times faster than [4] and [5] respectively.

C. Qualitative comparison

In figures 2, 3, and 4 we present qualitative compar-
isons of all considered error formulations on different cam-
era models. Figure 2 shows the errors in the same setting as
Figure 4 from the main paper, where the correspondence is
between a fisheye and a panoramic image, but now we also
include the pinhole errors and EπSED. Figure 3 shows the
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Figure 1. Comparison to Kukelova et al. [4]. The figure shows the
Kendall-Tau correlation between the reprojection error obtained
from the optimal triangulation from Kukelova et al. [4] and the
Tangent Sampson error. For comparison we also show the pinhole
ML error computed using the method for Lindstrom [5]

Runtime (Eigen)

Name Relative Absolute

EALG Algebraic error 1.0 2.3 ns
ECS Cosine error 1.3 3.1 ns

EML (Pinhole) Reproj. error 16 37 ns
ESED (Pinhole) Sym. Epi. Dist. 1.1 2.6 ns
ES (Pinhole) Sampson error 1.1 2.5 ns

EπML Reproj. error 495 1160 ns
EπSED Proj. Sym. Epi. Dist. 52 121 ns
ETS Tangent Sampson 3.5 8.2 ns

Table 1. Runtime comparison for the error metrics compared in the
experimental evaluation. The errors are grouped by the domain
where the error is computed: geometric errors ( ), the undis-
torted image ( ) and the original image ( ). Computational
cost is shown relative to the algebraic error which is the cheapest.
The table shows the runtime for naive implementations using
the Eigen [3] library. We will make the intrinsic optimized ver-
sions (as reported in the main paper) available as open-source.

errors on the pinhole image. Figure 4 shows the errors for
a pair of fisheye images. Tangent Sampson is the only error
formulation that consistently approximates the true repro-
jection error faithfully. Only two error formulations, EALG

and ETS , do not degenerate around the epipole for all im-
age pairs that we consider. However, the algebraic error
does not reproduce the spread of the true reprojection er-
ror values around the epipolar curve. We believe that stable
behavior around the epipole contributes to the better con-
vergence properties we observed when using ETS .

D. Covariance-aware Sampson Error
Here we derive the generalization of the Tangent Samp-

son error in the case of known covariances in point posi-
tions, arriving at the equation (33) from Section 3.2. We be-
gin by linearizing the constraint in the maximum-likelihood
error (31):

E2
TS(z,E) = min

ẑ
(z − ẑ)⊺Σ−1(z − ẑ) (2)

s.t. C(z) + JC(ẑ − z) = 0.

The Lagrangian is given by

L(ẑ, λ) = (z − ẑ)⊺Σ−1(z − ẑ)

+ λ (C(z) + JC(ẑ − z)) , (3)

and the first-order constraints are

ẑ = z − 1

2
λΣJ⊺

C = 0, C(z) + JC(ẑ − z) = 0. (4)

Inserting the first equation into the second yields

λ =
2C(z)

JCΣJ⊺
C

=⇒ ẑ = z −
ΣJ⊺

CC(z)

JCΣJ⊺
C

. (5)

The minimum in (3) is thus given by

E2
TS =

C(z)2

JCΣJ⊺
C

. (6)

Now, we remember that C(z) = π−1(p1)
⊺Eπ−1(p2), so

its Jacobian can be evaluated using the procedure from Sec-
tion 3. Together with the fact that Σ = diag(Σ1,Σ2), this
gives us the desired expression:

E2
TS =

(d⊺
2Ed1)

2

∥d⊺
2EJ†

1∥2Σ1
+ ∥d⊺

1E
⊺J†

2∥2Σ2

. (7)

E. Additional Experiment Details
E.1. Pose refinement and RANSAC evaluations

Pose refinement for experiments in Sections 4.4 and 4.5
was performed using Ceres [1]. Optimization was run over
the S2 × SO(3) manifold to work around the inherent scale
ambiguity in single-camera relative pose estimation. We
used Levenberg-Marquardt optimization with the default
Ceres parameters and ran it for a maximum of 100 itera-
tions.

For a more fair comparison in RANSAC, we selected
an optimal outlier threshold for each error metric used with
RANSAC. We did this through a two-step procedure. First,
we extracted 1000 image pairs with at least 200 shared ob-
served 3D points from each reconstruction. For each pair,
we evaluated EπML and got an inlier ratio with inlier cor-
respondences having EπML < 1 pixel. We then selected



the initial threshold for each metric so that the inlier ratio
was the same. Next, we searched for an optimal thresh-
old among

{
2it, i ∈ {−3,−2, . . . , 3}

}
where t is the ini-

tial value we got in the first step. RANSAC was run for each
threshold candidate on the same set of image pairs used in
the first step. The results’ median of the pose error (max-
imal of angular translation and rotation error) was used to
decide which threshold is the optimal one.

To better distinguish between the methods, we ran vali-
dation for harder image pairs, that only have 50-200 shared
3D points. We selected all such pairs for each dataset
(4342 pairs in the Grossmunster dataset and 2731 pairs in
Kirchenge) and ran RANSAC on each one for each error
metric with the selected inlier threshold.

E.2. Averaging Kendall’s τ

The original Kendall’s τ coefficient for two rankings
(p1, . . . , pn) and (q1, . . . , qn) is defined as τ(p, q) =

|{concordant pairs in p, q}| − |{discordant pairs in p, q}|(
n
2

) . (8)

This can be generalized to the case where we have multiple
rankings per method (e.g. correspondences from different
image pairs). Given a set of m image pairs with ground
truth relative pose, two error formulations provide two sets
p1, . . . , pm and q1, . . . , qm of orderings such that

∣∣pi∣∣ =∣∣qi∣∣. Then, τ can be naturally generalized as τ =∑m
i=1

(
|{concordant in pi, qi}| − |{discordant in pi, qi}|

)∑m
i=1

(|pi|
2

) . (9)

To compute average correlation coefficients that we report
in the paper, we use equation (9).
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Figure 2. Qualitative comparison of different error functions for a spherical camera. The thresholds for colormaps were selected to
be the error at the point marked by the blue plus. The geometric error is only shown in the region where the 3D point after midpoint trian-
gulation does not correspond to negative depths of bearing vectors (areas where this does not hold for one or both depths are highlighted).
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Figure 3. Qualitative comparison of different error functions for a pinhole camera. The thresholds for colormaps were selected to be
the error at the point marked by the blue plus. The geometric error is only shown in the region where the 3D point after midpoint trian-
gulation does not correspond to negative depths of bearing vectors (areas where this does not hold for one or both depths are highlighted).
Note that level sets for the projection error are slightly curved on the pinhole image because the other camera model is non-linear.
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Figure 4. Qualitative comparison of different error functions for a fisheye camera. The thresholds for colormaps were selected to be
the error at the point marked by the blue plus.
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