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In this supplementary material, we first introduce more
details of the proposed cascaded dual-GRU architecture
(Sec. A), the polarization ambiguities (Sec. B), the iso-
depth cost (Sec. C), the imaging system (Sec. D) and the
synthetic data (Sec. E). Moreover, we provide more qualita-
tive results of stereo depth estimation (Sec. F), polarimetric
normal estimation (Sec. G), and additional ablation experi-
ments on different iteration numbers of GRU (Sec. H). Fi-
nally, we discuss the limitations of our work in Sec. I.

A. Detail of Cascaded Dual-GRU Architecture
As described in Sec. 4.3 of our main paper, we propose a

cascaded dual-GRU architecture to fuse the iso-depth con-
straint and the multi-domain correlation features. The cas-
caded dual-GRU architecture is composed of a regression
block and an optimization block, where a similar encoder-
decoder scheme is employed.

In the regression block, the actual correlation features
and the actual disparity are encoded by different encoders,
then concatenated with the contextual features to form the
input of the regression GRU. In the hybrid GRU module,
the hidden state is updated at each iteration as follows,

zt = σ(Conv3×3([ht−1, xt],Wz)),

rt = σ(Conv3×3([ht−1, xt],Wr)),

h̃t = tanh(Conv3×3([rt ⊙ ht−1, xt],Wh)),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

(1)

where the hidden state and the multi-domain input are noted
as ht and xt. Finally, the disparity is decoded by the Head
Net. Specifically, both the encoders and the Head-Net con-
sist of a two-layers convolution. The detail of the architec-
ture of the regression block is shown in Fig. A.

In the optimization block, similar to the regression block,
the virtual correlation features, along with the iso-depth
cost, the actual disparity, and the virtual disparity, are pro-
cessed by different encoders. The hidden state is recurrently
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updated by the GRU as Eq. 1 and decoded to generate the
increment of the disparity and the step length. The detail of
the architecture of the optimization block is shown in Fig. B.

B. Details of Polarization Ambiguities
Normally, for each pixel of the captured image, the dif-

fuse reflection or the specular reflection dominates. More-
over, the DoLP and AoLP satisfy different formulas for the
different reflections. For the diffuse reflection, the relation-
ship between the polarization and the surface normal is as
follows:

ρd =
(η − 1/η)2 sin2 θ

2 + 2η2 − (η + 1/η)2 sin2 θ + 4 cos θ
√

η2 − sin2 θ
,

(2)

ϕd = φ or ϕd = φ+ π, (3)

where η is the refractive index of the surface material. For
the specular reflection, we have the following equation:

ρs =
2 sin2 θ cos θ

√
η2 − sin2 θ

η2 − sin2 θ − η2 sin2 θ + 2 sin4 θ
, (4)

ϕs = φ± π

2
. (5)

Surface normal can be estimated from DoLP and AoLP
by solving the above equations. However, it is prone to be
proved that the ambiguity of the normal is introduced in
the solving process caused by the unknown reflection and
the multi-solution of the nonlinear equation. The polariza-
tion can be further classified into azimuth angle ambiguity
and zenith angle ambiguity. By solving Eq. 2 and Eq. 4,
we can get four possible solutions for the specular case and
two possible solutions for the diffuse case. In our method,
we bypass the zenith angle due to the unknown refractive
index. As for the azimuth ambiguity, we can get a total of
four possible solutions from Eq. 2 and Eq. 4. For the sake of
distinction, the azimuth ambiguity with a π/2 shift caused
by the different reflection is called the π/2-ambiguity. Con-
cretely, the azimuth vector is parallel to the AoLP vector
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Figure A. The detailed architecture of the regression block in our network. The multi-domain correlation feature is encoded first, and the
disparity increment is decoded from the recurrently updated hidden state.
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Figure B. The detailed architecture of the optimization block in our network. Both the encoded virtual correlation features and the encoded
iso-depth cost are injected into the GRU. The optimization GRU produces the disparity increment and the step length to optimize and
rectify the disparity.
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Figure C. Illustration of the geometric relationship between iso-
depth counter and azimuth vector. The normal vector n⃗ is orthogo-
nal to the iso-depth counter. The azimuth vector a⃗ is coplanar with
the iso-depth counter and orthogonal to the iso-depth counter.

for the diffusion reflection case, while the azimuth vector
is orthogonal to the AoLP vector for the specular reflection
case. Additionally, it can be seen that there is azimuth angle
ambiguity for the same reflection in Eq. 2 or Eq. 4, which is
noted as the π-ambiguity.

C. Details of Iso-depth Cost Derivation
In this section, we elaborate on the derivation of iso-

depth cost as described in Eq. 6 of the main paper.
The normal can be decomposed as the azimuth angle φ

and the zenith angle θ:

n =

nx

ny

nz

 =

cosφ sin θ
sinφ sin θ

cos θ

 . (6)

We can represent the azimuth angle by the depth as:

tan(φ) =
D(x, y + 1)−D(x, y − 1)

D(x+ 1, y)−D(x− 1, y)
, (7)

where x, y denotes the 3D coordinates in the camera frame.
As illustrated in Fig. C, the iso-depth contour is orthogonal
to the azimuth vector, which can also be concluded from
Eq. 7.

The surface normal n⃗ can be further expressed by the
depth D through the central difference method:

n⃗ = (P1,0 − P−1,0)× (P0,1 − P0,−1). (8)

It should be noted that the neighbourships of Eq. 8 and Eq. 7
are based on different reference coordinate systems. The
Eq. 8 is based on the image coordinate system, where the
P i,j denotes the 3D position of neighbor pixel (u+i, v+j)

relative to pixel (u, v). In contrast, the Eq. 7 is based on
the 3D coordinate system, where the depth D(x + i, y +
j) denotes the depth of the neighbor point relative to point
{x, y,D(x, y)}, which is utilized to illustrate the geometric

Figure D. The photograph of our imaging system. The stereo po-
larimetric cameras are fixed on the top plane of the RGB-D cam-
era. The extrinsic parameters between the cameras are calibrated.

relationship between the iso-depth contour and the azimuth
vectors.

By exploiting a suitable change of variables according to
the pinhole model, we can represent the azimuth angle as:

tan(φ) =
fy
fx

(D0,1 −D0,−1)(D1,0 +D−1,0)

(D1,0 −D−1,0)(D0,1 +D0,−1)
. (9)

Substituting the disparity into the iso-depth constraint,
we can further get

tan(φ) =
fy
fx

( d 0,−1 − d 0,1)( d −1,0 + d 1,0)

( d −1,0 − d 1,0)( d 0,−1 + d 0,1)
, (10)

where d i,j denotes the disparity of neighbor pixel P (u +
i, v + j) relative to pixel P (u, v).

Finally, recall Sec. 3 in the main paper and Sec. B in sup-
plementary that there are π-ambiguity and π/2-ambiguity
for the azimuth angle. We bypass the π-ambiguity by the
cross-product operator and resolve the π/2-ambiguity by
the argmin operator. The iso-depth is formulated as follows,

Cs(φ) = [sin (ϕ) sin (φ) + cos (ϕ) cos (φ)]
2
,

Cd(φ) = [sin (ϕ) cos (φ)− cos (ϕ) sin (φ)]
2
,

C(φ) = min {Cs(φ),Cd(φ)} ,
R(φ) = argmin {Cs(φ),Cd(φ)} .

(11)

D. Imaging System for Data Collection
We devise an efficient imaging system to capture the po-

larimetric stereo images and the depth images simultane-
ously. The imaging system is shown in Fig. D. The imaging
system consists of two polarization cameras and an RGB-D
camera.
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Figure E. The diagram of the real data processing procedure. The DoLP and AoLP are generated from the raw polarized images. The
ground truth of the disparity is retrieved from the raw depth images. The color maps of AoLP and DoLP are shown in the top-right corner.

Two Lucid PHX050S-Q polarization cameras are used
to capture the stereo polarization images, and a plate with
high machining accuracy is utilized to fix the stereo cam-
eras. Each polarization camera can capture four polariza-
tion images with different polarizer angles in a single shot.
Then the per-pixel DoLP and the AoLP value are calculated
as follows,

ρ =

√
(I0 − I90)2 + (I45 − I135)2

(I0 + I90)
, (12)

ϕ =
1

2
arctan(

I45 − I135
I0 − I90

), (13)

where the DoLP and the AoLP are noted as ρ and ϕ, the
intensity of four raw polarization images are represented as
I0, I45, I90 and I135.

We capture the depth image with an RGB-D camera to
generate dense ground truth of the disparity. Compared with
LiDAR, the RGB-D camera can provide dense depth, which

avoids the uncertain deviation introduced by the depth com-
pletion processing. The RGB-D camera can provide an ac-
curate depth image within the valid operating range, which
is suitable for our dataset. We calibrate the intrinsic parame-
ters between the polarimetric cameras and the RGB-D cam-
era. The depth image is warped from the RGB-D camera to
the left polarimetric camera to align with the left image.

The collecting procedure of real data is illustrated in
Fig. E.

E. Additional Details for Data Synthesis

We synthesize the polarimetric data of IPS from the ac-
curate normal map provided by the IRS[11] and take the
RGB image of the IRS dataset as the average intensity im-
age in our dataset. We design a procedure for synthesizing
the polarimetric data as illustrated in Fig. F.

Firstly, the normal is directly retrieved and converted to
the azimuth angle and the zenith angle according to Eq. 6.
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Figure F. The diagram of the data synthesizing procedure. We
first generate the DoLP and AoLP of different reflections. Then
we produce the polarization image with the mixed reflection ac-
cording to the segmentation result. Lastly, we add noise to the
polarization image.

Given the pixel-wise azimuth angle and zenith angle, we
calculate the AoLP image and the DoLP image dominated
by the specular reflection or diffuse reflection, respectively.

To further simulate the polarization with the mixed re-
flection in the natural environment, we segment the in-
stances in the RGB image by a semantic segmentation
method in [5]. Different instances are randomly given the
label of diffuse reflection or specular reflection, and the pix-
els belonging to the same instance are labeled by the iden-
tical reflection type. Then, we make use of the reflection
mask to produce AoLP and DoLP images with mixed re-
flection types.

In addition, we generate noise to augment the polariza-
tion data and better simulate the real data. The AoLP and
DoLP are converted to four polarized images with differ-
ent phase angles according to Eq. 1 of the main paper. We
add Gaussian noise into the polarized images and recover
the AoLP and DoLP from the noisy polarized images. We
add noise to the polarized images instead of directly modi-
fying the AoLP and DoLP to preserve the latent geometric
constraints.

It should be noted that we follow most of the existing po-
larization methods for 3D modeling [1, 2, 6, 10, 12, 14] and
generate the synthetic data by modeling per-pixel polariza-
tion as either diffuse or specular reflection is dominant. Ac-
cording to the Fresnel Equations, for the mixed reflections,
the two components of the polarization are perpendicular or
parallel to the reflection plane, and the AoLP of the total po-
larization appears as the AoLP of the dominant reflection,
referring to [2, 12, 13]. As for the DoLP map generated
from the dominant reflection model in our IPS dataset, even
though it is somewhat simple and may deviate from the real
data, it is only exploited to extract contextual features for
matching, which has a slight influence on the generaliza-
tion and performance of our network. Furthermore, after
the fine-tuning of the model on the real datasets, the gap
between the simulation and reality can be closed, and the
polarization feature can be well learned, making our pro-
posed network applicable to the real polarization state.

F. More Qualitative Results of Stereo Depth
Estimation and 3D Reconstruction

We present more qualitative results of stereo depth es-
timation on the IPS and the RPS dataset. We compared
our method with state-of-the-art methods, including RAFT-
Stereo [7] and LEA-Stereo [8]. As shown in Fig. G and
Fig. H, our method has a better performance compared to
other methods. Our method can produce more accurate and
sharper depth on both the synthesis and the real data. We
highlight the challenging regions for depth estimation with
bounding boxes in Fig. G and Fig. H.

In addition, we also show the mesh reconstructed by
our method, LEA-Stereo[8] and RAFT-Stereo[7] to fur-



ther compare the performance of stereo reconstruction. As
shown in Fig. I, our method can generate smoother and
more coherent surfaces, while the reconstructed results of
LEA-Stereo and RAFT-Stereo are coarser and lack details.
The comparison results reveal that our method can capture
the 3D geometry well and achieve high-quality reconstruc-
tion, which validates the effectiveness of our stereo method.

Besides, we also showcase the ability of our method
of recovering high-frequency 3D details. For better visu-
alization, we enlarge the detailed result with the intuitive
grayscale colormap. As shown in Fig. J, our results can
preserve high-frequency details, especially for the synthetic
data.

We propose more comparison results of the traditional
polarimetric stereo methods in [14]. We demonstrate the
inputs and the results of [14] as well as the results of our
method and the ground truth of disparities in Fig. K. Specif-
ically, the input is generated by SGM as mentioned in [4].
In addition, different color bars are related to the disparity
ranges of different disparity images.

The method in [14] is designed to recover depth from a
polarization and RGB stereo pair, which is similar to our
setting. As shown in Fig. K, we can see that both the re-
sults of SGM and our method are broadly in line with the
ground truth. However, there is still a notable deviation in
the disparity range between the ground truth and the re-
sults of [14]. The deviation may result from the follow-
ing reasons. First of all, the approach in [14] is focused on
the object-level application, while our method is concerned
about the scene-level application. In addition, our data is
captured under uncontrolled illumination, including natural
sunlight and complicated light source, which may not con-
form to the Lambert assumption. What’s more, the method
in [14] assumes the refractive index of the dielectric mate-
rial is known, which is unknown in our data.

G. Additional Qualitative Results of Polari-
metric Normal Estimation

In this section, we compare our method with the re-
cent polarimetric normal estimation methods SPW [6] and
DeepSfP [1]. DeepSfP is a learning-based method to imple-
ment shape recovery from polarimetric images of a single
view. In DeepSfP, a fully convolutional encoder-decoder
architecture is adopted to process both the raw polarized
images and the ambiguous normal map. In contrast, SPW
is a scene-level normal estimation network. SPW employs
a multi-head self-attention module and viewing encoding to
handle the polarization ambiguities and estimate the nor-
mal by a single-view polarization image. We pre-train and
fine-tune the SPW and DeepSfP with the same schedule as
our method. Specifically, we pre-train the SPW and the
DeepSfP for 100 epochs on the IPS dataset and fine-tune
them for 150 epochs on the RPS dataset. We utilize the fi-

Iteration 4 6 8 10
RAFT- AvgErr 0.852 0.724 0.681 0.672
Stereo Runtime(s) 0.255 0.309 0.352 0.408

Ours AvgErr 0.658 0.630 0.619 0.615
Runtime(s) 0.178 0.218 0.255 0.288

Table A. Comparison to RAFT-Stereo [7] with different iterations.
Our method is more efficient and accurate at all iterations.

Method Separate Backbone Single Backbone
AvgErr 0.641 0.619
bad 2.0 3.738 3.354

Table B. Comparison to the DPS-Net with additional ablation
studies. The ablation results of the separate backbone are listed.

nal models of the 150th epoch to generate the normal results
for comparison. Additional qualitative results are shown in
Fig. L, our method can recover better surface normal.

H. Additional Ablation Study of Hybrid GRU-
based Update Operator

We evaluate our method and the GRU-based method
RAFT-Stereo [7] with different iteration numbers. The re-
sults shown in Table A demonstrate that our method can
achieve better performance and takes shorter runtime than
RAFT-Stereo under different iteration numbers. It can be
seen that the accuracy increases with more iterations and
saturates beyond a certain number of iterations. Moreover,
in Table A, the runtime increases almost linearly with the it-
eration number while the performance improvement dimin-
ishes. Lastly, we choose 8 iterations for the training and
inference to balance efficiency and accuracy.

To further analyze our proposed network, we also carry
out the ablation on the separate backbones. Concretely, we
compare the performance of the networks that adopt sep-
arate backbones or the single backbone for the correlation
features and the context features extraction. As shown in
Table B, utilizing a single backbone can achieve better per-
formance.

I. Limitations
Although the proposed DPS-Net achieves competitive

performance for polarimetric stereo depth estimation, there
are still several aspects that can be further improved. At
first, the noise pattern of our synthetic data may be dif-
ferent from the real data since it is especially difficult to
fully simulate the noise caused by mixed reflections under
complicated lighting conditions. If more realistic polariza-
tion noises are introduced, the generalization of the pre-
trained model can be further improved. Moreover, while our
method is faster than other state-of-the-art learning-based
methods on the real dataset, it still takes about 250ms to
infer from the stereo polarization images with a resolution



of 1280x960 on a single NVIDIA 3090 GPU. In order to
accommodate real-time application scenarios, our network
needs to be further improved. We can optimize the archi-
tecture of our network based on the current accelerating
method presented in [9, 3]. At last, in the proposed DPS-
Net, we do not consider the material information which may
benefit the depth estimation due to the lack of reliable ma-
terial information in our dataset. In our future work, we
plan to introduce material cues into our network and con-
sider the consistency relevant to the material to improve the
performance of stereo reconstruction and disambiguation.
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Figure G. Additional qualitative results on the IPS dataset. We display the comparison results of our method, LEA-Stereo[8], and RAFT-
Stereo[7]. The bounding box visualizes the challenging region, including the thin structure, featureless area, and the boundary of the
objects.



Figure H. Additional qualitative results on the RPS dataset. Our DPS-Net generates sharper object boundaries and is robust to various
illumination.



Figure I. Additional stereo reconstruction results on the RPS dataset. We adopt a different observation view from the capturing view to
display the qualitative results and evaluate the reconstruction performances. Our DPS-Net can capture the geometry well and reconstruct
surfaces with higher quality.
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Figure J. Additional high-frequency detail results of the IPS and the RPS datasets. Both the details of the ground truth of the disparity and
the results of our method are enlarged. Our DPS-Net can preserve high-frequency details, especially for the synthetic data.



Figure K. More comparison results with traditional stereo depth estimation methods. From left to right: input left images, the ground
truth of disparities, the results of SGBM[4], the results of [14], and the results of our method. The color bars exhibited are used to show
the data range of disparities.



Figure L. Additional qualitative normal estimation results of our method, SPW[6] and DeepSfP[1] on the RPS dataset. Our DPS-Net can
achieve better performance.


