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1. Appendix

In this section, we introduce and prove the theorems
mentioned in the main text of this paper.

A. Proof to Theorem 1

Given sample x, we have the data observations vA, vB

of its augmented viewpoints. On this basis, the embeddings
zA, zB are obtained from the projector fψ .

To maximally preserve sample information that is invari-
ant w.r.t. distortions, an initial objective can be formulated
as follows:

max
ψ

I(zA; vB), (1)

where I(zA; vB) denotes the mutual information between
zA and vB . Based on the information processing inequality,
we show:

I(zA; vB) ≤ I(vA; vB), (2)

which suggests another solution to Eq. (1), i.e., approximat-
ing I(zA; vB) to its upper-bound. Hence, a refined objec-
tive can be given as:

min
ψ
I(vA; vB)− I(zA; vB). (3)

According to the definition of mutual information [1],

I(z; v) := H(v)−H(v|z), (4)

where H(v) denotes Shannon entropy, and H(v|z) is the
conditional entropy of z given v [1]. On this basis, we rear-
range Eq. (3) by:

I(vA; vB)− I(zA; vB)
= H(vB)−H(vB |vA)−H(vB) +H(vB |zA)
= H(vB |zA)−H(vB |vA). (5)

Therefore, Eq. (3) is equivalent to:

minH(vB |zA)−H(vB |vA). (6)

Recall the definition of conditional entropy, for continual
variables vA, zA, and vB , we have:

I(vA; vB)− I(zA; vB) = H(vB |zA)−H(vB |vA) =

−
∫
p(zA)dzA

∫
p(vB |zA) log p(vB |zA)dvB

+

∫
p(vA)dvA

∫
p(vB |vA) log p(vB |vA)dvB =

−
∫∫

p(zA)p(vB |zA) log
[
p(vB |zA)
p(vB |vA)

p(vB |vA)
]
dzAdvB

+

∫∫
p(vA)p(vB |vA) log

[
p(vB |vA)
p(vB |zA)

p(vB |zA)
]
dvAdvB .

(7)

By factorizing the double integrals in Eq. (7) into another
two components, we show the following:

∫∫
p(zA)p(vB |zA) log

[
p(vB |zA)
p(vB |vA)

p(vB |vA)
]
dzAdvB

=

∫∫
p(zA)p(vB |zA) log p(v

B |zA)
p(vB |vA)

dzAdvB︸ ︷︷ ︸
termZ1

+

∫∫
p(zA)p(vB |zA) log p(vB |vA)dzAdvB︸ ︷︷ ︸

termZ2

. (8)

Conduct similar factorization for the second term in Eq. (7),
we have:

∫∫
p(vA)p(vB |vA) log

[
p(vB |vA)
p(vB |zA)

p(vB |zA)
]
dvAdvB

=

∫∫
p(vA)p(vB |vA) log p(v

B |vA)
p(vB |zA)

dvAdvB︸ ︷︷ ︸
termV1

+

∫∫
p(vA)p(vB |vA) log p(vB |zA)dvAdvB︸ ︷︷ ︸

termV2

. (9)
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Integrate term Z1 and term V1 over vB :

Z1 =

∫
p(zA)DKL[p(v

B |zA)‖p(vB |vA)]dzA, (10)

V1 =

∫
p(vA)DKL[p(v

B |vA)‖p(vB |zA)]dvA, (11)

where DKL denotes KL-divergence. By integrating term
Z2 and term V2 over zA and vA respectively, we have:

Z2 =

∫
p(vB) log p(vB |vA)dvB , (12)

V2 =

∫
p(vB) log p(vB |zA)dvB . (13)

In the view of above, we have the following:

I(v; y)− I(z; y) = H(y|z)−H(y|v)

=

∫
p(vA)DKL[p(v

B |vA)‖p(vB |zA)]dvA

+

∫
p(vB) log

[
p(vB |zA)
p(vB |vA)

]
dvB

−
∫
p(zA)DKL[p(v

B |zA)‖p(vB |vA)]dzA. (14)

Based on the non-negativity of KL-divergence, Eq. (14) is
upper-bounded by:∫

p(vA)DKL[p(v
B |vA)‖p(vB |zA)]dvA

+

∫
p(vB) log

[
p(vB |zA)
p(vB |vA)

]
dvB . (15)

Equivalently, we have the upper-bound as:

EvA,vB∼f(x;θ)EzA∼f(v;ψ)[DKL[p(v
B |vA)‖p(vB |zA)]]

+ EvA,vB∼f(x;θ)EzA∼f(v;ψ)
[
log

[
p(vB |zA)
p(vB |vA)

]]
,

(16)

where θ, ψ parameterize the encoder and projector, respec-
tively. Therefore, the objective of maximizing the invariant
sample information in zA can be formulated as:

min
θ,ψ

Ev∼f(x;θ)Ez∼f(v;ψ)
[
DKL[PAv ||PAz ] + log

[
PAz
PAv

]]
,

(17)

in which PAz = p(vB |zA) and PAv = p(vB |vA) denote the
predicted distributions of the representation and observa-
tion, respectively.

Clearly, the objective of preserving sample information
is equivalent to minimizing the discrepancy between the
predicted distributions of vA and zA. Notice that this can
be achieved by minimizingDKL(PAv ||PAz ), which explicitly

approximates p(vB |zA) to p(vB |vA) and implicitly reduce
the second term in Eq.(17) in the same time. Ideally, the
representation zA retrieves all sample information shared
by the other viewpoint vB when PAz coincides with PAv , i.e.,:

DKL[PAv ||PAz ] = 0⇒ PAz = PAv (18)

Based on Eq. (14) , we show the following:

DKL[p(v
B |vA)‖p(vB |zA)]dvA = 0

⇒ H(vB |zA)−H(vB |vA) = I(vA; vB)− I(zA; vB) = 0,
(19)

which reveals that minimizing DKL[PAv ||PAz ] is consistent
with the objective of preserving the invariant sample infor-
mation for zA (symmetric to zB). Thus Theorem 1 holds.

Implementation. To avoid intractability in LsSSL, we
assume a variational distribution N

(
vB |R

(
zA
)
, σI
)

with
R as a deterministic mapping to reconstruct vB from zA

(more details could be found in [4]). On this basis, we have
LsSSL defined as:

min
zA=f(vA;ψ),R

DKL

[
p(vB |vA)||p(vB |R(zA))

]
, (20)

where p(vB |R(zA)) (similar for p(vB |vA)) is approxi-

mated with 1
n

∑n
i=1 log

e〈R(zAi ),vB
i 〉

1
n

∑n
j=1 e

〈R(zA
i

),vB
j

〉 , a common for-

mulation in self-supervised learning.

B. Proof to Theorem 2

Given vA, vB as the observations of sample x from dif-
ferent augmentations, and zA, zB are the corresponding
representations. As analyzed in [5, 4, 2], removing varia-
tion caused by distortions plays a crucial role in unleash-
ing instance-level discrimination. To this end, we provide
the following analytical solutions to explicitly eliminating
I(vA; zA|vB) and I(vB ; zB |vA) without diminishing the
sample information.

Considering that zA, zB ∼ f(v;ψ), I(vA; zA|vB) can
be expressed as:

I(vA; zA|vB) = EvA,vB∼f(x;θ)EzA,zB∼f(v;ψ)
[
log

p(zA|vA)
p(zA|vB)

]
= EvA,vB∼f(x;θ)EzA,zB∼f(v;ψ)

[
log

p(zA|vA)p(zB |vB)
p(zB |vB)p(zA|vB)

]
= DKL[p(z

A|vA)||p(zB |vB)]−DKL[p(z
B |vA)||p(zB |vB)]

≤ DKL[p(z
A|vA)||p(zB |vB)]. (21)

Notice this bound is tight whenever zA and zB preserve
sufficient sample information [2], which can be assured by
the Theorem 1 (proved in appendix.A). On this basis, we



Table 1: Evaluation of our alternate leaner using different
memory size. All experiments are conducted on CIFAR-
100 under task-incremental protocol. Average time of our
baseline with the same setting is adopted as 1.0x.

Setting 0.5k 1k 2k 4k

Avg. Acc 73.49 77.03 80.04 81.93

Avg. Time 1.14x 1.31x 1.42x 1.79x

formulate the following objective to explicitly removing the
variation I(vA; zA|vB):

EvA,vB∼f(x;θ)EzA,zB∼f(v;ψ)
[
DKL[PAz|v||P

B
z|v]
]
, (22)

in which PAz|v = p(zA|vA) and PBz|v = p(zB |vB) denote
the predicted distributions. Similarly, we introduce the fol-
lowing objective to minimize I(vB ; zB |vA).

EvA,vB∼f(x;θ)EzA,zB∼f(v;ψ)
[
DKL[PBz|v||P

A
z|v]
]
, (23)

For simplicity, we apply Eq. (24) to eliminate the variation
for both views.

EvA,vB∼f(x;θ)EzA,zB∼f(v;ψ)
[
DJS [PAz|v||P

B
z|v]
]
, (24)

where DJS denotes the Jensen-Shannon divergence. In the
view of above, Theorem 2 holds.

Implementation. Suggested by [2], the projector
ψ is modeled by Normal distribution parametrized with
a neural network (µψ, σ

2
ψ), which defines p(zA|vA) as

N
(
zA|µψ(vA), σ2

ψ (vA)
)

(symmetric for p(zB |vB)). On
this basis, the density of ψ can be evaluated, and thus the
JS-divergence between p(zA|vA) and p(zB |vB) can be di-
rectly computed.

C. Additional experiments

In this section, we evaluate our approach with different
memory sizes and demonstrate the generalization to other
vision task (i.e., image classification).

According to Tab. 1, the memory size acts a critical role
to the performance, which provides significant improve-
ment with linearly increased cost. On the other hand, our
method outperforms all competitors with the most popular
memory budget (i.e., 2k), and achieves competitive accura-
cies with much less storage (i.e., 0.5k and 1k).

Furthermore, we apply our SSL strategy to image clas-
sification and exhibit the comparison with other techniques
in Tab. 2, where the superior performance demonstrates the
generalization ability of our theories.

Table 2: Evaluation of different self-supervised strategies
on image classification. All experiments obtained by fol-
lowing the baseline in [3] with the ResNet-18 architecture
and a KNN classifier.

Setting CIFAR-10 CIFAR-100 Tiny-ImageNet

SimSiam 95.76 86.31 82.89

BarlowTwins 95.48 87.16 82.42

Ours 96.09 87.32 83.31
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