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As presented in the main paper, we put the detail of eval-
uation metrics in the supplementary materials, along with
more related work, visualization, implementation / train-
ing detail and more ablation of OccNet, and detail about
BEVNet, VoxelNet and OpenOcc post-processing.

1. Evaluation Metrics

Semantic Scene Completion (SSC) Metric. For the scene
completion task, we predict the semantic label of each voxel
in 3D space. The evaluation metric is defined by mean
intersection-over-union (mloU) over all classes:

c
1 TP,
IoU = — - 1
o C;TPC+FPC+FNC’ M
where C' = 16 is the class num in the benchmark, TP,

FP. and FN, represent true positive, false positive, and false
negative predictions for class ¢, respectively. In addition,
we consider the class-agnostic metric IoU ., to evaluate the
geometrical reconstruction quality of scene.

3D Object Detection Metric. We use the official evaluation
metrics for the nuScenes datasets [1], including nuScenes
detection score (NDS), mean average precision (mAP), av-
erage translation error (ATE), average scale error (ASE), av-
erage orientation error (AOE), average velocity error (AVE)
and average attribute error (AAE).

Motion Planning Metric. For planning evaluation, we fol-
low the metrics in ST-P3 [3]. In detail, L2 distance is cal-
culated by the planning trajectory and the ground-truth tra-
jectory for the regression accuracy, and collision rate (CR)
to other vehicles and pedestrians is applied for the safety of
future actions.

2. More Related Work

BEYV segmentation [9, 4] implicitly squeezes the height in-
formation into each cell in BEV map. However, in some
challenging urban settings, explicit height information is
necessary to capture entities above the ground, e.g. traf-
fic lights and overpass. As an alternative, 3D occupancy is
3D geometry-aware.

3. Implementation Detail of OccNet

Backbone and Multi-scale Features. Following previ-
ous works [5, 8], We adopt ResNetl01 [2] as the back-
bone with FPN [6] to extract the multi-scale features from
multi-view images. We use the output features from stages
S3, S4, and S5 from ResNetl01, where S,, means the
downsampling factor is 1/2™ with the feature dimension
C,, = 256 x 2"~2, In the FPN, the features are aggregated
and transforms to three levels with sizes of 1/16, 1/32, 1/64
and the dimension of C,, = 256.

BEYV Encoder. The BEV encoder follows the structure of
BEVFormer [5], where the multi-scale features from FPN
are transformed into the BEV feature. The BEV encoder
includes 2 encoder layers with the temporal self-attention
and spatial cross-attention. Then the BEV query @Q; grad-
ually refines in the encoder layers with spatial-temporal-
transformer mechanism to learn the scene representation in
BEV space.

Feature Transformation in Voxel Decoder. To lift
the voxel feature V,, € RZXHxWxCi o VI W~ ¢
RZi+1xHXWxCit1 e uge the MLP to transfer the feature
dimension from Z; x C; to Z; 11 x C;41. To implement the
spatial cross attention for Vt:i, the multi-scale image fea-



tures from FPN with dimension of C,, = 256 are trans-
formed into dimension of C; utilizing the MLP.

Training Strategy. Following previous works [5, 8], we
train OccNet 24 epochs with a learning rate of 2 x 1074, a
batchsize of 1 per GPU with six images, and AdamW op-
timizer [7] with a weight decay of 1 x 10~2. For the im-
plementation of downstream tasks, all the perception tasks
(except BEV segmentation) are trained at once, and the oth-
ers are fine-tuned based on the frozen tasks.

Details of VoxelNet and BEVNet. Different from the Oc-
cNet with cascaded feature map, we construct the VoxelNet
and BEVNet with single-scale feature map. In detail, Vox-
elNet uses voxel queries Qoze; € R¥>*HXW to construct
the voxel feature map F,ope; € R*>*HXWXC1 from the im-
age feature using 3D-DA directly, and expands it to full-
scale occupancy V € RI6>*HxWXC2 yging fully connected
layer. BEVNet generates BEV feature [}, € REXWxC1
as in BEVFormer and reshapes it to voxel feature V' €
RIGXHXWXC: directly. Here C; and Cy stand for the num-
ber of channels. Both VoxelNet and BEVNet adopt tempo-
ral context fusion accordingly.

4. More Detail about OpenOcc

Accumulation of Foreground objects. To accumulate
the foreground object, we split the LiDAR points into object
points and background points. However, the 3D box anno-
tation of intermediate frame is not provided in the nuScenes
dataset [1]. We approximately annotate the 3D box using
the linear interpolation based on two adjacent key frames,
then we can accumulate dense object points with available
intermediate LiDAR points.

Dataset Generation Pipeline. With accumulated dense
background points and foreground object points, we gen-
erate the occupancy data following the pipeline as shown in
Figure 1. We gradually fine tune the occupancy data and
obtain the 3D occupancy benchmark with dense and high-
quality annotations in Figure 1(d).

Dataset Statistics. We annotate 16 classes in 34149
frames for all 700 training and 150 validation scenes with
over 1.4 billion voxels. The label distribution of 16 classes
is shown in Figure 2, indicating great diversity in the
benchmark. There exists a significant class imbalance phe-
nomenon in the dataset, for example, where the 10 fore-
ground objects only account for 5.33% of the total labels,
especially the bicycle and motorcycle, which account for
0.02% and 0.03%, respectively.

We provide the additional flow annotation of eight fore-
ground objects, which is helpful for the downstream task

Figure 1. The generation process of our occupancy data. (a)
Generating the occupancy data based on objects points and par-
tial background points with label, where the black points denotes
the unknown background points from the intermediate frame. (b)
Annotating partial unknown background points based on gener-
ated occupancy data. (c) Removing the remaining unknown back-
ground points which are regarded as noise. (d) Postprocessing the
occupancy data to ensure the completeness of the scene, such as
fill the hole, denoted by the red dashed box.

such as motion planning. We split the object into mov-
ing state and stationary state based on the velocity thresh-
old v, = 0.2m/s, and the percentage of moving object for
each class is given in Figure 3. Note that the percentage of
moving foreground object is over 50%, indicating the sig-
nificance of motion information in the autonomous driving
scenes.

5. More Experiments

Ablations on Frame Number for Temporal Self-
Attention. We investigate the effect of frame number ap-
plied for temporal self-attention during training. From Ta-
ble 1 and Table 2, we find that increasing temporal frames
results in better performance, which slows down until a
threshold of four frames is reached. Meanwhile, insuffi-
cient previous frames would hurt the performance to some
extent.

Evaluation on Occupancy Metrics for Planning. We
utilize the ground truth of occupancy as the metrics to eval-
uate the planning model, instead of the bounding box of
vehicles and pedestrians. Specifically, all of foreground oc-
cupancy voxels and four classes of background occupancy
voxels, i.e., other flat, terrain, manmade, and vegetation, are
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Figure 2. The distribution of occupancy classes in the OpenOcc
benchmark. We notice that the background stuff is the majority
in 3D occupancy data.
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Figure 3. The percentage of occupancy with velocity for each
foreground object. For 10 foreground objects in the benchmark,
we only consider the 8 movable classes.

calculated collision rate with trajectory. As shown in Ta-
ble 3, using occupancy as input for planning model is still
more advantageous in most of the intervals under this met-
rics. In the future research, a specific design of cost function
for occupancy input may further improve the performance
of planning.

Pre-training for planning. As evaluating the pre-trained
model on 3D detection and BEV segmentation tasks in the
main paper, we further compared the impact on the down-

#Num ‘ IoUgeo? mloUT  barriert bicyclet  bust

0 37.49 19.21 20.07 4.70 24.11
1 36.89 18.35 18.77 4.51 21.66
2% 37.69 19.48 20.63 5.52 24.16
3 38.36 20.30 21.39 6.47 24.65
4 39.21 20.81 22.30 5.66 25.13
9 39.36 20.68 20.75 7.83 24.79

Table 1. The effect of historical frames on the semantic scene
completion task using OccNet with ResNet50 backbone. The
“#Num” denotes the historical frame number used during training.
* stands for number used in the main paper.

#Num ‘ mloUT  barrier! bicyclef busfT  cart
53.82 59.02 24.05 67.61 69.59 59.38
48.41 57.45 21.52 5771 67.26 44.60
52.33 61.41 26.07 7397 70.56 52.64
53.49 60.98 2445 7020 69.37 56.84
54.59 62.09 21.06 7505 70.20 59.40
9 54.35 60.04 30.83 7549 71.02 61.63

Table 2. The effect of historical frames on the LiDAR seg-
mentation task using OccNet with ResNet50 backbone. The
“#Num” denotes the historical frame number used during training.
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Collision (%)] L2 (m)}

1s 2s 3s ‘ 1s 2s 3s

Input ‘
Bbox GT ‘1.66 288 437 ‘ 133 218 3.03

Occupancy GT 1.63 285 429 | 1.29 213 299

1.75 285 437 | 133 217 3.04
1.68 294 432 | 130 215 3.02

Bbox pred. (OccNet)
Occupancy pred. (OccNet)

Table 3. Planning results with different scene representations
under occupancy metrics. Occupancy representation is still more
advantageous most of the intervals.

stream planning task. Specifically, the perception module of
ST-P3 [3] is replaced by pre-trained OccNet, and the plan-
ning module is fine-tuned. Unfortunately, the pre-training
on OccNet does not provide an advantage for planning as
shown in Table 4. Therefore, combined with the experiment
of planning in the main paper, we should directly apply the
scene completion results of occupancy in the planning task
instead of these pre-trained features.

Collision (%)
1s 2s

L2 (m)]

Input‘ 3s ‘ 1s 2s 3s

Det 038 040 082 | 085 118 157
Occ 047  0.68 1.03 | 093 126  1.70

Table 4. Different pretraining tasks for planning. Pretrained
features from occupancy do not directly bring performance bene-
fits to planning.

Ablations in Semantic Scene Completion. Table 5
shows the comparison of BEVNet, VoxelNet, OccNet in the
task of semantic scene completion. We can see that the de-



sign of cascaded voxel structure can help learn a bettern
occupancy descriptor to represent the 3D space.

Effect of Voxel Resolution on LiDAR Segmentation.
We voxelize the 3D space with the resolution As €
{1.0m, 0.5m, 0.25m} to investigate the effect of voxel reso-
lution on LiDAR segmention. Since we transfer semantic
occupancy prediction to LiDAR segmentation by assign-
ing the point label based on associated voxel label, the per-
formance of LiDAR segmention will increase with the de-
crease of As as shown in Table 6. OccNet with camera
input can achieve the performance of LiDAR based method
with As — 0.

6. Visualization Results

We sample two scenes in the validation set and provide
detailed visualization of the occupancy prediction in Fig-
ure 5, indicating that OccNet can describe the scene geom-
etry and semantics in detail. As shown in Figure 4, we com-
pare the rasterized occupancy with the rasterized bounding
box as the input of planning module, indicating that occu-
pancy is superior to bounding box for motion planning task.



.S‘: 2 = ":’ . =
E 3 2 ¢ 3 & & ¢ I 35 : § £ %
5 %] - . <

Method | Backbone |IoUy., | mloU | & 8 2 g 3 = 2 £ § S 5 i E 12 = g
BEVNet | ResNet50 | 36.11 | 17.37 | 14.02 5.07 20.85 2494 8.64 7.75 12.8 893 1021 16.02 4441 14.42 23.87 27.76 13.73 24.49
VoxelNet | ResNet50 | 37.59 | 19.06 | 19.31 6.25 22.16 26.89 996 691 1270 6.27 943 1696 46.7 2331 26.04 29.08 16.52 26.46
OccNet ResNet50 | 37.69 | 19.48 | 20.63 5.52 24.16 27.72 9.79 7.73 13.38 7.18 10.68 18.00 46.13 20.60 26.75 29.37 16.90 27.21
BEVNet | ResNetl01 | 40.15 | 24.62 | 26.39 15.79 32.07 35.83 11.93 19.72 19.75 1538 12.82 2390 49.16 21.52 30.57 31.39 18.99 28.71
VoxelNet | ResNet101 | 40.73 | 26.06 | 27.98 1595 32.31 36.15 14.88 20.55 20.72 16.52 15.13 2594 49.07 27.82 31.04 32.43 20.45 29.99
OccNet | ResNetl101 | 41.08 | 26.98 | 29.77 16.89 34.16 37.35 15.58 21.92 21.29 16.75 16.37 26.23 50.74 27.93 31.98 33.24 20.8 30.68

Table 5. Ablation in semantic scene completion with different models. OccNet is superior to BEVNet and VoxelNet in performance.
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Method | As(m) | miou| & & 2 § S £ =3 g E g 5 Z 2 I3} £ g
OccNet | 1.00 | 46.60 | 52.78 21.04 65.94 62.45 18.31 15.49 30.71 15.82 33.94 50.22 83.93 48.84 50.52 57.89 69.49 68.29
OccNet | 0.50 | 47.29 | 59.06 20.63 48.32 63.05 24.12 2024 41.82 18.84 23.38 41.12 8646 53.12 52.03 59.14 71.55 73.68
OccNet | 025 | 53.00 | 65.93 22.84 64.09 72.69 32.73 28.73 5221 17.64 22.05 51.26 89.05 57.41 58.06 64.30 75.09 73.92

Table 6. The performance of OccNet with ResNetS0 backbone on nuScenes validation set for LIDAR segmentation task. The method
with the smallest As show best performance.

B

Figure 4. Visualization of planning. The blue line represents the planned trajectory, and the lower figures are rasterisation results of
bounding box and occupancy, respectively. The trajectory obtained by the rasterized occupancy input can maintain a greater safety distance

from the truck, because of the more accurate polygon representation.
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Figure 5. Visualization of occupancy prediction. For each scene, the top left figure is the surrounding camera input, and the left bottom

figure and right figure represents the perspective view and top view of occupancy prediction result. The dashed region denotes that OccNet

can predict the small size target or the distance target well.
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