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Supplementary Material

A. The effect of variance in gaze annotations

Figure 1: An image from the GazeFollow dataset’s [10] test
split which has several annotations for the gaze point with
high annotation variance.

As mentioned in the paper, the GazeFollow dataset [10]
contains a single gaze point annotation for a single person in
a scene in its training split. However, its test splits include
several numbers of annotations with respect to a single per-
son’s gaze. The number of annotations can be varying up to
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Figure 2: Performance of Our model (2D and 3D) and Tu
et al. [12] w.r.t. the variance in the ground-truth annotations
of the GazeFollow dataset [10].

10 different gaze points for each person. Such an annotation
procedure would not present an issue if all the annotators
reached a consensus regarding the gaze point, however, as
also shown in [8] the test split annotations of that dataset
per person can vary remarkably. An example image and the
corresponding gaze points demonstrating the variety across
the annotations are given in Fig. 1.

On the other hand, the standard metric used to make
evaluations on this dataset, aka AUC does not consider the
(possible) varieties across the annotations. For this reason,
herein as well as in the main paper, we present an additional
evaluation procedure, which considers the multiple annota-
tions that GazeFollow test split provides (see Fig. 2). That
evaluation procedure can be described as follows. For each
gaze point annotation corresponding to a single person, we
compute its distance to the corresponding average gaze an-
notation point. We record all the distances for the whole test
split and compose a distribution from them. Then, given
this distribution, we keep the gaze points falling inside a
certain threshold (shown as variance retained in the figure),
and we opt for the deciles for easiness of computation. For
each decile, we compute the AUC and report it in Fig. 2.
As seen, our method is extremely effective when there is
high annotation consensus, i.e. the distance from the aver-
age point falls in the first decile (i.e., 0-10% variance re-



tained in the figure); the performance slightly decreases un-
til the eighth decile (i.e., 70-80% variance retained in the
figure), with the last 20% representing high noise annota-
tions (i.e., 80-100% variance retained in the figure) where
the performance lowers at a faster rate. When we compare
our performance against the state-of-the-art method of [12],
one can observe a consistently higher performance for all
cases both in 2D and 3D versions of our method. We spec-
ulate that the lower performance of Ours-3D w.r.t. Ours-2D
can be since the human annotations were collected on 2D
images.

B. Additional evaluation on GazeFollow [10]
and VideoAttentionTarget [2]

Table 1 reports the Angular Error [10] (i.e. the angle be-
tween predicted and ground-truth gaze vector) results and
compare it with SOTA. Our method produces the best re-
sults out of all, while Ours (3D) is better than Ours (2D).

Ours (2D) Ours (3D) [12]⋆ [11]⋆ [5] [1] [4] [2]⋆ [7] [10]

Min. ↓ 4.0° 3.5° (−12.5%) 6.6° 8.1° — — — 9.1° 8.8° —
Avg. ↓ 7.7° 7.2° (−6.2%) 11.0° 19.5° 14.8° 14.6° 14.9° 20.5° 17.6° 24.0°
Max. ↓ 20.1° 19.3° (−3.9%) 22.5° 37.0° — — — 37.9° — —

Table 1: Angular error on GazeFollow [10] ⋆ means our
implementation. Improvements are w.r.t. “Ours (2D)”.

C. Implementation Details

We implemented our method in PyTorch and relied on
the official code of DETR [13] as the backbone. The heads
of DETR [13], i.e. the two MLPs for object classification
and detection, were replaced by two larger MLPs that al-
low us to predict the location and classification of objects
in the scene including the heads. Therefore, the number
of classes of objects is adapted to accommodate the head
class. We used a SOTA object detector, YOLOv8 [6], to
pseudo-annotate objects in images that lack object annota-
tions. This has been needed since the used datasets (ex-
cept the COCO subset of the GazeFollow dataset) do not
provide object annotations. We finetuned the Object De-
tector Transformer using head locations given in the used
datasets as well as automatically obtained using an addi-
tional head detector, RetinaFace [3], and for other objects
extracted from YOLOv8. RetinaFace was necessary (but
other head detectors can be also adapted as shown in Tu et
al. [12]) as we observed that both Tu et al. [12], and our
method could not converge without head annotations of all
heads in the image. The depth images were obtained by
processing both datasets with a SOTA monocular depth es-
timation method called MIDAS [9].

D. Qualitative Results

In this section, we provide additional qualitative results
of the gaze heatmaps and the head bounding box of the gaze
source (i.e., a person’s head) and demonstrate the improved
performance of our method w.r.t. the current state-of-the-
art (SOTA) for both GazeFollow [10] and VideoAttention-
Target [2] datasets. Furthermore, we discuss some example
cases in which our method has relatively lower performance
(AUC < 70%) w.r.t. ground-truth as well as Tu et al. [12].
Lastly, we compare our methods’ versions in 2D and 3D and
demonstrate the latter’s effectiveness in challenging scenar-
ios.

Comparison with SOTA and ground-truth. Fig. 3 and
Fig. 4 compare our predictions with respect to the ground
truth and the predictions of Tu et al. [12] on both datasets,
GazeFollow [10] and VideoAttentionTarget [2]. As we can
see, our model precisely predicts the gaze in many scenes
where [12] is not able to. More importantly, we can see
that predictions of both our method and Tu et al. [12] are
in the field of view of the person whose gaze is to be pre-
dicted. However, [12] favors image regions closer to the
gaze source (i.e. person’s head).

Relatively low-performing predictions. Fig. 5 presents
example images in which our method relatively performs
worse. Notice that such images are highly challenging and
most of the time also SOTA [12] underperform, e.g. in the
second row of Fig. 5, where the head-pose makes it difficult
to accurately predict the gaze. Conversely, when the face is
not fully visible, e.g., in the third and fifth row of Fig. 5, we
predict scattered heatmaps that cover the gaze point.

The contribution of 3D gaze cone. Fig. 6 demonstrates
the results of our method with the 2D or 3D gaze cone (see
main paper for additional details). This comparison aims
to highlight the importance of the 3D cone particularly in
challenging scenes. As the quantitative results in the main
paper showed, the advantage of the 3D cone is especially
visible in terms of the average and minimum distance be-
tween the ground-truth gaze point and the point of maxi-
mum confidence of the gaze heatmap. The example images
in Fig. 6 demonstrate that in complex scenes, the 3D gaze
vector and the corresponding 3D gaze cone help to decipher
which object the person is looking at. Moreover, when the
predictions with 2D cone are already high (e.g. the first row
of Fig. 6), the 3D cone counterpart further consolidates the
center of the heatmap towards the object, resulting in better
performance.
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Figure 3: Qualitative results of our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
GazeFollow [10] dataset (right). Please note that we only show gaze predictions for the person whose gaze is included in
the ground truth. The green boxes show the person-in-interest for the ground truth while they are the detected head for Our
and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously, for better
visualization, we plot the predicted heatmaps and head locations per person.



Figure 4: Qualitative results of our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
VideoAttentionTarget [2] dataset (right). Please note that we only show gaze predictions for the person whose gaze is
included in the ground truth. The green boxes show the person-in-interest for the ground truth while they are the detected
head for Our and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously,
for better visualization, we plot a single person’s predicted heatmaps and head location.



Figure 5: Qualitative results in which Our method performs relatively lower since the images are highly challenging due to
several reasons (see text for details). Our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
GazeFollow [10] dataset (right). The green boxes show the person-in-interest for the ground truth while they are the detected
head for Our and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously,
for better visualization, we plot a single person’s predicted heatmaps and head location.



Figure 6: Qualitative results of our 2D (left) and 3D (center) method w.r.t. the ground-truth annotations of the GazeFollow
[10] dataset (right), showing the importance of 3D-gaze cone building. Even though our method can detect the gaze of
multiple persons in the scene simultaneously, for better visualization, we plot a single person’s predicted heatmaps and head
location.


